Водоподготовка. Технологии хво и водоподготовки

Поверхностные и подземные воды, в зависимости от геологических и гидрогеологических условий, содержат в себе различные химические вещества, концентрации которых могут превышать требования, предъявляемые к качеству воды при ее использовании в коммунальном хозяйстве, на производстве в различных отраслях промышленности и сельского хозяйства. Для выполнения данных требований и существуют такие сферы деятельности как водоподготовка и водоочистка.

Современные методы очистки воды позволяют подготовить воду требуемого качества для любого производства, а так же для использования ее в хозяйственно-бытовых целях.

Системы водоочистки, в зависимости от используемого метода обработки воды (способа очистки воды), можно условно разделить на две функциональные группы: безреагентные, не использующие в процессе очистки воды химические реагенты, и реагентные, которые реализуются с применением химических реагентов.

Безреагентный метод очистки воды применяется при обезжелезивании, деманганации, обескремнивании и извлечении различных микроорганизмов, при условии соответствия качества обрабатываемой воды определенным требованиям. Безреагентные современные методы водоподготовки, могут осуществляться на установках «ДЕФЕРРИТ» в процессах биологической очистки подземной воды и на обратноосмотических мембранных установках "УМО" . Этот метод исключает попадание в воду вредных химикатов и при этом отлично обеззараживает воду.

Современный способ очистки воды - включает в себя установки безреагентного обеззараживания путем облучения воды ультрафиолетовыми лучами или озоном, которые могут применяться на различных этапах обработки воды.

Современные системы водоочистки и обеззараживания воды предусматривают использование различных типов коагулянтов и флокулянтов, растворов щелочей или кислот, гипохлорита натрия или других специфических дезинфекантов.

Современные методы водоподготовки, основанные на применении реагентов, успешно осуществляются на установках "СТРУЯ" , "ВЛАГА" , "ДЕФЕРРИТ" .

Выбор современной системы водоочистки зависит от типа водоисточника (поверхностный или подземный) физико-химического и микробиологического состава исходной воды, а так же условий водоотведения и экологической ситуации на объекте.

Группа Компаний «ЭКОХОЛДИНГ» готова предложить ряд современных методов водоподготовки позволяющих добиться высокого качества питьевой воды, практически из любого водоисточника. «ЭКОХОЛДИНГ» - одна из ведущих компаний на рынке разработки современных способов очистки воды, а так же современных методов водоподготовки, которые позволяют добиваться высокого качества очищенной воды, соответствующих предъявляемым требованиям. Многолетний опыт работы, использование современных методов очистки воды, дают возможность обеспечивать водой требуемого качества не только сельские и городские объекты, но и крупные предприятия промышленности. Современные способы водоочистки используются на установках, разработанных нашими специалистами, и позволяют достичь наилучшего результата за разумные деньги.

С целью улучшения качества воды применяют следующие способы ее подготовки: отстаивание, фильтрация, коагуляция, деодорация, обезжелезивание, умягчение, обеззараживание.

Отстаивание и фильтрацию используют для освобождения воды от взвешенных частиц. Отстаивание проводят в резервуарах. Процесс осаждения частиц идет медленно. Способ требует больших отстойных резервуаров и площадей, поэтому применяется редко. Более распространена фильтрация через песочные и угольно-песочные фильтры.

Обычной фильтрацией нельзя освободиться от коллоидов. В этом случае проводят коагуляцию . Воду обрабатывают веществами (коагулянтами ), которые вызывают укрупнение коллоидных частиц и выпадение их в осадок. В качестве коагулянтов применяют сульфат алюминия и сульфат железа. В водном растворе сульфат алюминия подвергается гидролизу с образованием малорастворимой гидроокиси алюминия.

Al 2 (SO 4) 3 + 6H 2 O 2Al(OH) 3 ↓+ 3H 2 SO 4

Хлопья гидроокиси алюминия имеют сильно развитую поверхность, которая способна адсорбировать растворимые органические вещества большой молекулярной массы (гуминовые вещества, кремневую кислоту и ее соли и т.д.). В результате этого вода осветляется и освобождается от неприятных привкусов. Для ускорения процесса коагуляции и снижения расхода коагулянтов в воду добавляют флокулянты (например, полиакриламид), способствующие хлопьеобразованию.

Деодорация – обработка воды, устраняющая неприятные запахи, привкусы, которые обусловлены наличием примесей в незначительных количествах. Применяют озонирование (дорогой способ) или обработку активным углем. При фильтровании воды через слой активного угля органические соединения адсорбируются на его поверхности. После такой обработки удаляются из воды не только запахи и привкусы, но снижается ее цветность и окисляемость.

Обезжелезивание . Вода с высоким содержанием железа имеет неприятный вкус и запах и ее использование отрицательно сказывается на процессах брожения, качестве готовой продукции. Поэтому соединения железа следует удалять. Чаще всего воду подвергают аэрированию. При этом Fe 2+ окисляется в Fe 3+ , образуется нерастворимый Fe(OН) 3.

4Fe(HCO 3) 2 + 2H 2 O + O 2 4 Fe(OH) 3 + 8CO 2

После такой обработки воду обязательно фильтруют.

Умягчение состоит в удалении из воды солей кальция и магния. Осуществляется несколькими способами: реагентным, ионообменным, обратноосмотическим, электродиализным.

Реагентный способ – основан на связывании ионов кальция и магния и переводе их в нерастворимые соединения. Разновидности реагентного способа - известковый и содово-известковый.

Известковый способ заключается в обработке воды раствором извести:

Са(HCO 3) 2 + Са(ОH) 2 2СаСО 3 + Н 2 О

Mg(HCO 3) 2 + Са(ОH) 2 MgCO 3 + СаСО 3 + 2Н 2 О

MgCO 3 + Са(ОH) 2 2СаСО 3 + Mg(OH) 2

Содово -известковый способ заключается в последовательной обработке воды растворами извести и соды:

Са,Mg(SO 4) + Na 2 CO 3 (Ca,Mg)CO 3 + Na 2 SO 4

После реакции осадок удаляют. Этот способ прост в исполнении, относительно дешев, можно умягчать воду при любой исходной жесткости до остаточной величины 0,5-1,8 ммоль/дм 3 , однако требует больших производственных площадей и значительного расхода реагентов. В настоящее время практически вытеснен способами ионообмена.

Ионообменный способ умягчения состоит в удалении из воды ионов кальция и магния при помощи ионитов.

Иониты – твердые, практически не растворимые в воде и органических растворителях материалы, способные обменивать свои ионы на ионы, находящиеся в воде. По характеру активных групп иониты делят на катиониты (замещают в растворе катионы на ионы Н 2 , Nа + или другие катионы) и аниониты (замещают анионы в растворе на ионы ОН - или другие анионы).

В качестве ионитов применяют синтетические смолы, природные алюмосиликаты (цеолиты, глаукониты), сульфоугли.

Для умягчения воды чаще всего используют сульфоуголь в Na + -форме, реже в Н + -форме.

Умягчение воды путем ионообмена проводят в вертикальных колонках. Вода проходит через слой угля и происходит замещение ионов Na + или Н + катионита ионами Са 2+ и Mg 2+ , содержащихся в воде.

При этом протекают следующие реакции:

2NaR + Ca(HCO 3) 2 CaR 2 + 2NaHCO 3

2NaR + Mg(HCO 3) 2 MgR 2 + 2NaHCO 3

2HR + Ca,Mg(SO 4) (Ca,Mg)R 2 + H 2 SO 4

R – комплекс катионита.

Постепенно объемная емкость катионита уменьшается. Для ее восстановления Na + -катионит регенерируют путем пропускания раствора поваренной соли, Н + -катионит – растворами серной или соляной кислоты. При регенерации протекают следующие реакции:

(Сa,Mg)R 2 + 2NaCl 2NaR + (Ca,Mg)Cl 2

Недостатком Na-катионирования является подщелачивание воды, увеличение сухого остатка. При Н-катионировании данный недостаток отсутствует, т.к. образуются кислоты, снижающие щелочность воды.

Если временная жесткость более 5 ммоль/дм 3 , то лучше использовать комбинированный способ, например, Na-Н-катионирование (последовательное или параллельное).

В частных случаях можно обессолить воду путем последовательного Н-катионирования и ОН-анионирования. Такая вода по составу близка к дистиллированной, т.к. освобождена от катионов и анионов.

Электродиализный способ служит для обессоливания воды. Заключается в переносе растворенных веществ через ионитовые мембраны под действием электрического поля. При этом катиониты движутся к катоду, проходят через катионитовые мембраны и задерживаются анионитовыми. Аниониты движутся в обратном направлении – к аноду, проходят через анионитовые мембраны и задерживаются катионитовыми.

Недостатками метода являются закупорка мембран вследствие осаждения слаборастворимых солей (поэтому воду предварительно надо очищать), большие затраты электроэнергии.

Метод обратного осмоса наиболее перспективный. Он заключается в фильтровании воды под давлением, превышающим осмотическое, через полупроницаемые мембраны. При этом мембраны пропускают растворитель (воду), но задерживают растворенные вещества (ионы солей, молекулы органических соединений). Мембраны при этом меньше загрязняются, так как вещества на них не сорбируются

Обеззараживанию подвергается вода, которая имеет отклонения по бактериологическим показателям. Существуют следующие способы обеззараживания: хлорирование, обработка ультрафиолетовыми лучами, озонирование, обработка ионами серебра и ультразвуком.

Хлорирование – применяется газообразный хлор, хлорная известь (СаСl 2), гипохлорид кальция Са(ОСl) 2 . При обычных условиях хлорирования действие хлора распространяется лишь на вегетативные формы микроорганизмов. Для спорообразующих микроорганизмов требуется большие дозы хлора и длительный контакт с водой. Кроме того, хлор, соединяется с органическими соединениями, например с фенолами, и вода приобретает «аптечный» привкус. Вода с высоким содержанием хлора не пригодна для обработки дрожжей.

Озонирование . Сущность способа заключается в том, что до соприкосновения с водой воздух подвергается воздействию электрического разряда. При этом часть кислорода превращается в озон. Молекула озона очень нестойкая и распадается на молекулярный и атомарный кислород (О 2 и О +). Атомарный кислород, действуя как окислитель, приводит к гибели бактерий. Одновременно снижается цветность воды, она приобретает приятный вкус и запах. Метод дорогой, применяется ограниченно. По бактерицидному действию не отличается от хлорирования.

УФ-облучение – прогрессивный способ. Обеззараживающее действие является мгновенным и распространяется на вегетативные и споровые формы микроорганизмов. Эффективность бактерицидного воздействия ультрафиолетовых лучей зависит от продолжительности и интенсивности облучения, а также от наличия взвесей и коллоидов в воде, рассеивающих свет и препятствующих проникновению лучей в толщу воды. В качестве источника ультрафиолетового излучения используют ртутно-кварцевые и аргонно-ртутные лампы, которые устанавливают в аппаратах на пути движения воды. Установки бывают с погружными и непогружными источниками излучения.

Обработка ионами серебра. Ионы серебра даже в малых дозах обладают бактерицидным действием, но распространяется оно только на вегетативные формы микроорганизмов и очень незначительно - на споровые формы. Эффект бактерицидного действия достигается при продолжительном (двухчасовом) контакте ионов серебра с водой. Обогащают воду ионами серебра методом контактирования с посеребренным песком; непосредственным растворением в воде солей серебра; электролитическим способом с помощью ионизаторов.

Применение ультразвука . При большой мощности ультразвуковых волн вблизи поверхности вибратора происходит как бы взрыв жидкости и образование пустот. Этот процесс называется «кавитация». Под действием кавитации клетки микроорганизмов разрываются на части. При обработке ультразвуком в течение 5 мин достигается полная стерилизация воды. Метод дорогой и еще не нашел широкого применения в промышленности.

Чаще всего на предприятиях проводят комплексную обработку воды, включающей несколько ступеней очистки, что зависит от качества исходной воды.

> Системы водоподготовки

Сегодня термин «водоподготовка» прочно укрепился. Хотя впервые этот термин появился с появлением паровых котлов и паровых машин. Ученые заметили, что долговечность этих сооружений напрямую зависит от качества воды. Воду, которую использовали в паровых котлах и паровых машинах специальным образом готовили.

Водоподготовка – это процесс удаления из воды всех примесей, начиная от взвешенных частиц и заканчивая солями металлов.

С водоподготовкой мы сталкиваемся каждый день. Зачем в магазинах автозапчастей продают дистиллированную воду? Для обслуживания аккумуляторных батарей. Поскольку, если в аккумулятор залить обычной воды - через несколько дней Вы автомобиль просто не заведете.

В наши дни, этот термин получил более широкое понимание. К промышленной водоподготовке добавилась бытовая водоподготовка. Огромное количество бытовых фильтров появилось на рынке. Экология ухудшается, а люди заметили, что от чистоты потребляемой воды зависит наше с вами здоровье.

Водоподготовка и водоочистка - синонимы?

На бытовом уровне, водоподготовка и водоочистка – это одно и тоже. Это синонимы.

Фильтр очистки воды от железа – это один из элементов системы в коттедже или загородном частном доме.

Фильтр для умягчения воды – это другой элемент водоподготовки.

Системы водоподготовки - основные составляющие

Рассмотрим основные составляющие системы:

  1. Фильтр механической очистки . В качестве него обычно применяют самопромывной фильтр, где механические примеси задерживает металлическая сетка. В случаях с большой мутностью, применяют осадочные фильтры, организованные в колоннах различного размера с песчаной засыпкой.
  2. Фильтр-обезжелезиватель . Служит для удаления из воды растворенного железа. Попутно удаляет марганец и сероводород.
  3. Фильтр-умягчитель . Удаляет из воды соли жесткости.
  4. Угольный фильтр . Удаляет запах и задерживает частички фильтрующих материалов предыдущих фильтров. Может реализовываться в виде картриджного фильтра или в виде колонны.
  5. Фильтр-обеззараживатель на основе ультрафиолетовой лампы. Удаляет бактерии в воде. Эти фильтры наиболее актуальны для колодцев и неглубоких скважин.
  6. Обратноосматический фильтр . Удаляет фтор и другие примеси. Применяется для приготовления питьевой воды.

Пятый пункт становится наиболее актуальным последнее время. Один сосед очищает стоки и отводит очищенную воду подальше, а второй сосед за высоким забором без всякой очистки льет под себя. Вот и получается, что в ближнем Подмосковье не осталось чистых колодцев. Почти во всех обнаруживают кишечную палочку. И количество таких соседей не уменьшается.

В одном из поселков престижного района московской области мы обнаружили в воде споры сибирской язвы. Дальнейшее изучение темы выявило, что в 30-е годы на этом месте был скотомогильник. Случаи такие – крайне редки, но прецеденты есть.

Замечено, что мягкая вода менее вкусная . В святых источниках жесткость воды на уровне 7 мг-экв/л. Но такая жесткость портит нагревательные приборы, в чайнике образуется накипь, бойлеры горячего водоснабжения быстро выходят из строя. Вот и появляется задача оптимизации промышленной водоподготовки и бытовой водоподготовки.

Для артезианских вод Подмосковья водоподготовка необходима . В среднем содержание железа составляет 3 мг/литр. Этого вполне достаточно, чтобы при стирке светлое белье окрасить в рыжий цвет.

Элементы системы водоподготовки и водоочистки

Как отмечалось, по технологии элементы водоподготовки бывают реагентные и безреагентные. Очевидно, что в картриджном фильтре ничего восстанавливать не надо. Нужно просто вовремя заменить картриджный элемент. А в фильтре умягчителе используется насыщенный раствор соли. Эта технология считается реагентной.

Фильтры - обезжелезиватели тоже делятся на реагентные и безреагентные.

  • В реагентных фильтрах используется раствор марганцовки или поваренной соли.
  • В безреагентном - только воздух, который компрессором подается в систему (хотя правильнее считать, что в этом случае реагентом является воздух).

Водоподготовка начинается с химического анализа воды

Выбор тех или иных технологий в водоподготовке зависит от химического анализа воды. Например когда водородный показатель РН меньше 7 единиц, очистка с аэрацией от железа не применяется. Здесь необходимо ставить РН-корректор, либо применять в качестве фильтрующего элемента ионообменные смолы.

Поэтому, если Вы чувствуете в себе силы и знания смонтировать систему водоподготовки самостоятельно, для выбора технологической схемы настоятельно рекомендуем обратиться к химику-технологу по водоподготовке. Нюансов достаточно много.

Городская вода тоже проходит водоподготовку. Обеззараживание воды в промышленных масштабах производится хлором. Большинство бытовых фильтров и предназначены для удаления хлора.

Поскольку все процессы водоподготовки скрыты от наших глаз, появилось много мошенников, которые за очень умеренные деньги предлагают фильтры, которые не только удалят из воды все вредные примеси, но и зарядят воду чудодейственными ионами, без которых вообще жить не возможно.

Система водоподготовки и ее стоимость

Увы, чудес не бывает. Чем выше степень очистки воды, тем дороже стоит система водоподготовки. Чем производительнее система - тем она дороже.

Необходимо отметить, что существует устойчивая тенденция постоянного снижения цен на системы водоподготовки при улучшении качества их работы. Наука не стоит на месте. И мембранные технологии вошли в технологию водоподготовки в виде реверсосматических фильтров.


Проблема
Изношенность инженерных сетей, устаревшие системы водоподготовки и водоочистки и, как следствие, окислы железа, накипь, жесткость воды и ее последующее хлорирование – все это комплекс проблем, с которым ежедневно сталкиваются жилищно-коммунальные службы. Накапливаемые годами в трубах железная окалина, мелкая взвесь и пристеночная слизь во время перепадов давления смешиваются с водой, и уже в таком виде попадают в дома. Такая вода имеет железистый привкус водопроводных труб, различные органические примеси, которые невозможно убрать кипячением, и специфический цвет. Между тем, в промышленной подготовке новые инновационные методы очистки появляются почти ежегодно. Задача промышленной подготовки состоит в том, чтобы не только обезопасить от примесей воду, но и сохранить дорогостоящее оборудование.

Методы
Методы, которые сегодня применяются в водоподготовке, разнообразны, начиная с простейших фильтров, задерживающих твердые частицы, и заканчивая сложными комплексными системами. Последние можно часто встретить на крупных предприятиях тепловой энергетики. Основная сложность, которая встречается при проектировании систем, как бытовой водоподготовки, так и промышленной водоподготовки заключается в том, что для полной очистки приходится комбинировать различные методы. Вторая проблема, которая в обязательном порядке учитывается при водоподготовке – различный состав исходной воды.
Чаще всего при промышленной водоподготовке производится обезжелезивание воды, в то время как бытовая водоподготовка акцентирует внимание на таких элементах, как: магний, калий, кальций. Повышенное содержание железа в воде придает ей буроватую окраску, неприятный металлический привкус. Повышенное содержание железа, марганца вызывает зарастание трубопроводов, что снижает скорости потоков, давление в трубопроводах.
Однако превращение воды в дистиллированную вредно для организма, поэтому некоторые системы водоподготовки работают в два этапа: сначала водоподготовка предусматривает полную очистку, а затем выполняется строго дозированная минерализация.
Мембранный метод основан на пропускании загрязненного раствора через полупроницаемую перегородку с отверстиями меньшими, чем размер частиц загрязнений. В процессе очистки происходит: макро- и микрофильтрация, ультра- и нанофильтрация, обратный осмос. Вод очищается от крупных и коллоидных частиц, мелких взвесей, микроорганизмов, растворенных ионов и органических молекул.
Эффективность удаления методом обратного осмоса различных ионов зависит от их заряда и размера, определяющих степень гидратации, и увеличивается с ростом этих характеристик.
Однако использование этого метода имеет ряд ограничений. Вода, подаваемая на мембраны не должна содержать железа, грубых механических примесей, должна быть умягченной и т.п. Это необходимо для предотвращения отложения малорастворимых солей на поверхности мембран и их разрушения.
Нередко применяется и водоподготовка с использованием ультрафиолетового излучения. Ее плюсы: безопасность для здоровья людей, быстрота и экономическая выгода.
Снижение жесткости (умягчение воды), еще один важный момент, который нужно учитывать. В противном случае происходит быстрое разрушение котлов и труб отложениями солей. Умягчители воды позволяют устранить все проблемы, связанные с присутствием в воде солей жесткости.
Еще один вопрос, о котором долго спорят, обеззараживание воды, которое является важнейшем элементом водоподготовки. К примеру, на водопроводных станциях Петербурга обеззараживание хлором осуществлялось с 1911 по 2008 годы. У соединений хлора – высокая длительность обеззараживающего эффекта, и в городах с большой протяженностью водопроводной сети до сих пор не существовало иного способа поддерживать эпидемиологическую безопасность питьевой воды во время ее транспортировки к потребителям. Однако именно Санкт-Петербург стал первым мегаполисом в мире, который полностью отказался от использования жидкого хлора при обеззараживании воды. Еще в 2003 году ГУП «Водоканал Санкт-Петербурга» впервые в процессе обеззараживания воды применил гипохлорит натрия в качестве альтернативы жидкому хлору. За пять лет были введены в эксплуатацию заводы по производству низкоконцентрированных растворов гипохлорита натрия из поваренной соли.

Отопление
Вторая проблема, связанная с водоподготовкой, это система отоплений зданий, столь актуальная в начале каждого осенне-зимнего сезона. Одна из главных трудностей, с которой сталкиваются эксплуатационные организации, это образование твердых отложений на внутренней поверхности котлов, теплообменников и трубопроводов тепловых станций. Образование этих отложений приводит к серьезным потерям энергии, достигающих 60%. Большие отложения могут полностью блокировать работу системы, привести к закупориванию, ускорить коррозию и в итоге вывести из строя дорогое оборудование. Все эти проблемы возникают из-за того, в водогрейных котельных для подпитки тепловых сетей, как правило, либо отсутствуют установки водоподготовки, либо те, что установлены, морально и физически уже устарели.
«Источниками загрязнений сетевой воды являются, главным образом, системы отоплений зданий и сооружений, сетевые трубопроводы, а также попадание посторонних примесей при ремонте участков тепловых сетей, – комментирует С.П. Батуев, генеральный директор ООО СПКФ «ВАЛЁР». – Причина образования железоокисных отложений в системах отопления и трубопроводах тепловой сети в так называемой стояночной коррозии и отсутствии консервации оборудования в межотопительный период. Учитывая, что интенсивность стояночной коррозии в среднем в 15-20 раз выше интенсивности коррозии, протекающей в период эксплуатации, а также продолжительность межотопительного периода – в среднем 5 месяцев, это приводит к накоплению большого количества железоокисных отложений в отопительных системах, сетях и оборудовании к началу отопительного периода. Эти отложения при включении циркуляции теплоносителя в большом количестве попадают в тепловые сети. Концентрация загрязнений в обратной сетевой воде в этот период может многократно превышать нормативные значения по содержанию железа, взвешенных частиц, цветности, прозрачности, мутности».
Современные технологии водоочистки значительно уменьшают риск выхода из строя котельного оборудования. Выбор оборудования для очистки сетевой воды в значительной степени зависит от физико-химических свойств загрязнений. В связи с этим, большую важность представляют данные, характеризующие состав, структуру, свойства загрязнений. Причем следует учитывать, что концентрация и дисперсный состав механических загрязнений могут значительно меняться в течение отопительного периода.
Существует ряд способов решения этой проблемы, каждый из которых связан с различными капитальными и эксплуатационными затратами. Из множества известных вариантов предотвращения образования накипи в настоящее время получили распространение лишь несколько: электромагнитная обработка воды, технология Na-катионирования, дозирование в воду антинакипинов последнего поколения, которые позволяют обеспечить полную защиту котельного оборудования от образования отложений. Обработка воды производится с использованием комплексов, включающих дозирующие насосы Tekna, ProMinent и емкость с рабочим раствором. Данный способ позволяет полностью отойти от технологии умягчения воды, то есть исключить затраты на приобретение соли, химические же промывки теплообменников и котлового оборудования можно осуществлять не чаще 1 раза в 3 года.
Технология обратного осмоса позволяет обойтись без высоких эксплуатационных расходов на реагенты и позволяет сбрасывать в канализацию или очистные сооружения воду с солесодержанием, в большинстве случаев, не превышающем допустимые значения. Однако такие установки имеют высокую стоимость.
При выборе устройств для очистки сетевой воды от загрязнений, наряду с характером загрязнений, важное значение имеют такие показатели, как эффективность очистки, возможная производительность по воде и рабочий диапазон расходов, простота и удобство эксплуатации. Подобных недостатков лишены устройства, использующие гидродинамические принципы очистки (например, сочетание процессов инерции и гравитации). Комбинированное использование этих процессов реализовано в инерционно-гравитационных грязевиках ГИГ.

В чем экономия?
Специалисты подсчитали, что мероприятия по водоподготовке дают экономию топлива от 20 до 40%, увеличивается срок работы котлов и котельного оборудования до 25-30 лет, значительно уменьшаются расходы на капитальный и текущий ремонт котлов и теплового оборудования. Окупаемость установок водоподготовки зависит от их производительности и составляет от 6 месяцев до 1,5 – 2 лет.


Полная или частичная перепечатка материалов - только с письменного разрешения редакции!

1. Что понимают под пароводяным циклом котельных установок

Пароводяной цикл это период, времени за который вода превращается в пар и этот период повторяется много раз.

Для надежной и безопасной работы котла важное значение имеет циркуляция воды в нем – непрерывное движение ее в жидкостной смеси по некоторому замкнутому контуру. В результате этого обеспечивается интенсивный отвод тепла от поверхности нагрева и устраняются местные застои пара и газа, что предохраняет поверхность нагрева от недопустимого перегревания, коррозии и предотвращает аварию котла. Циркуляция в котлах может быть естественной и принудительной (искусственной), создаваемой с помощью насосов.

В современных конструкциях котлов поверхность нагрева выполняется из отдельных пучков труб, подсоединенных к барабанам и коллекторам, которые образуют достаточно сложную систему замкнутых циркуляционных контуров.

На рис. приведена схема так называемого циркуляционного контура. В сосуд наливается вода, причем левое колесо U – образной трубки подогревают, образуется пар; удельный вес смеси пара и воды будет меньше по сравнению с удельным весом в правом колене. Жидкость в подобных условиях не будет, находится в состоянии равновесия. Например, А – А давление слева будет меньше, чем справа – начинается движение, которое и носит название циркуляции. Пар выделится с зеркала испарения, удаляясь далее из сосуда, а на него место в таком же количестве по весу поступит питательная вода.

Для расчета циркуляции решают два уравнения. Первое – выражает материальный баланс, второе баланс сил.

Первое уравнение формулируется так:

G под =G оп кг/сек, (170)

Где G под - количество воды и пара, движущихся в подъемной части контура, в кг/сек;

G оп - количество воды, движущихся в опускной части, в кг/сек.

Уравнение баланса сил может быть выражено следующей зависимостью:

N = ∆ρ кг/м 2 , (171)

где N– полный движущий напор, равный h(γ в - γ см), в кг;

∆ρ – сумма гидравлических сопротивлений в кг/м 2 , включая и силу инерции, возникающих при движении пароводяной эмульсии и воды по контору и вызывающих в итоге равномерное движение с определенной скоростью.

В циркуляционном контуре котла имеется большое количество параллельно работающих труб, причем условия их работы не могут быть в силу ряда причин совершенно идентичны. Чтобы обеспечить бесперебойную циркуляцию во всех трубах параллельно работающих контуров и не вызвать в каком-нибудь из них опрокидывания циркуляции, необходимо увеличить скорость движения воды по контуру, что обеспечивается определенной кратностью циркуляции К.

Обычно кратность циркуляции выбирается в пределах 10 – 50 и при малой тепловой нагрузки труб значительно больше 200 – 300.

Расход воды в контуре с учетом кратности циркуляции равняется

где D = расход пара (питательной воды) рассчитываемого контура в кг/час.

Скорость воды при входе в подъемную часть контура можно определить из равенства

2. Причины образования отложений в теплообменных аппаратах

Различные примеси, содержащиеся в нагреваемой и испаряемой воде, могут выделятся в твердую фазу на внутренних поверхностях парогенераторов, испарителей, паропреобразователей и конденсаторов паровых турбин в виде накипи, а внутри водяной массы – в виде взвешенного шлама. Нельзя, однако, провести четкую границу между накипью и шламом, так как вещества, отлагающиеся на поверхности нагрева в форме накипи, могут с течением времени превращаться в шлам и наоборот, шлам при некоторых условиях может прикипать к поверхности нагрева, образуя накипь.

Из элементов парогенератора загрязнению внутренних поверхностей больше всего подвержены обогреваемые экранные трубы. Образование отложений на внутренних поверхностях парообразующих труб влечет за собой ухудшение теплопередачи и как следствие опасный перегрев металла труб.

Радиационные поверхности нагрева современных парогенераторов интенсивно обогреваются топочным факелом. Плотность теплового потока в них достигает 600–700 квт/м 2 , а местные тепловые потоки могут быть еще выше. Поэтому даже кратковременное ухудшение коэффициента теплоотдачи от стенки к кипящей воде приводит к столь значительному росту температуры стенки трубы (500–600 °С и выше), что прочность металла может оказаться недостаточной, чтобы выдержать возникшие в нем напряжения. Следствием этого являются повреждения металла, характеризующиеся появлением отдулин, свинца, а нередко и разрывом труб.

При резких температурных колебаниях в стенках парообразующих труб, которые могут иметь место в процессе эксплуатации парогенератора, накипь отслаивается от стенок в виде хрупких и плотных чешуек, которые заносятся потоком циркулирующей воды в места с замедленной циркуляцией. Там происходит осаждение их в виде беспорядочного скопления кусочков различных величин и формы, сцементированных шламом в более или менее плотные образования. Если в парогенераторе барабанного типа имеются горизонтальные или слабонаклонные участки парообразующих труб с вялой циркуляцией, то в них обычно происходит скопление отложений рыхлого шлама. Сужение сечения для прохода воды или полная закупорка парообразующих труб приводят к нарушению циркуляции. В так называемой переходной зоне прямоточного парогенератора до критического давления, где испаряются последние остатки влаги, и осуществляется небольшой перегрев пара, образуется отложения соединений кальция, магния и продуктов коррозии.

Поскольку прямоточный парогенератор является эффективной ловушкой труднорастворимых соединений кальция, магния, железа и меди. То при повышенном содержании их в питательной воде они быстро накапливаются в трубной части, что значительно сокращает продолжительность рабочей кампании парогенератора.

Для того чтобы обеспечить минимальные отложения как в зонах максимальных тепловых нагрузок парообразующих труб, как и в проточной части турбин, необходимо строго поддерживать эксплуатационные нормы допустимого содержания в питательной воде тех или иных примесей. С этой целью добавочная питательная вода подвергается глубокой химической очистки либо дистилляции на водоподготовительных установках.

Улучшение качества конденсатов и питательной воды заметно ослабляет процесс образования эксплуатационных отложений на поверхности паросилового оборудования, но полностью его не устраняет. Следовательно, в целях обеспечения должной чистоты поверхности нагрева необходимо наряду с одноразовой предпусковой очисткой проводить также периодические эксплуатационные очистки основного и вспомогательного оборудования и при том не только при наличии систематических грубых нарушений установленного водного режима и при недостаточной эффективности проводимых на ТЭС противокоррозионных мероприятий, но и в условиях нормальной эксплуатации ТЭС. Проведение эксплуатационных очисток особенно необходимо на энергоблоках с прямоточными парогенераторами.

3. Опишите коррозию паровых котельных по пароводяному и газовому трактам

Металлы и сплавы, употребляемые для изготовления теплоэнергетического оборудования, обладают способностью вступать во взаимодействие с соприкасающейся с ними средой (вода, пар, газы), содержащей те или иные коррозионноагрессивные примеси (кислород, угольная и другие кислоты, щелочи и др.).

Существенным для нарушения нормальной работы парового котла является взаимодействие растворенных в воде веществ с обмыванием его металлом, в результате чего происходит разрушение металла, которое при известных размерах приводит к авариям и выходу из строя отдельных элементов котла. Такие разрушения металла окружающей средой называются коррозией. Коррозия всегда начинается с поверхности металла и постепенно распространяется в глубь.

В настоящее время различают две основные группы коррозионных явлений: химическая и электрохимическая коррозия.

К химической коррозии относятся разрушения металла в результате его непосредственного химического взаимодействия с окружающей средой. В теплосиловом хозяйстве примерами химической коррозии являются: окисление наружной поверхности нагрева горячими дымовыми газами, коррозия стали перегретым паром (так называемая пароводяная коррозия), разъедание металла смазочными материалами и др.

Электрохимическая коррозия, как показывает ее название, связана не только с химическими процессами, но и с передвижением электронов во взаимодействующих средах, т.е. с появлением электрического тока. Эти процессы происходят при взаимодействии металла с растворами электролитов, что и имеет место в паровом котле, в котором циркулирует котловая вода, представляющая собой раствор распавшихся на ионы солей и щелочей. Электрохимическая коррозия протекает также при контактировании металла с воздухом (при обычной температуре), содержащем всегда пары воды, которые конденсируясь на поверхности металла в виде тончайшей пленки влаги, создают условия для протекания электрохимической коррозии.

Разрушение металла начинается, по существу, с растворения железа, заключающегося в том, что атомы железа теряют часть своих электронов, оставляя их в металле, и превращаются, таким образом, в положительно заряженные ионы железа, переходящие в водный раствор. Этот процесс не происходит равномерно по всей поверхности омываемого водой металла. Дело в том, что химически чистые металлы обычно недостаточно прочны и поэтому в технике применяют преимущественно их сплавы с другими веществами, как известно, чугун и сталь являются сплавами железа с углеродом. Помимо этого, к конструкции стали добавляют в небольших количествах для улучшения ее качества кремний, марганец, хром, никель и др.

По форме проявления коррозии различают: коррозию равномерную, когда разрушение металла происходит примерно на одинаковую глубину по всей поверхности металла и коррозию местную. Последняя имеет три основные разновидности: 1) язвенная коррозия, при которой разъедание металла развивается в глубину на ограниченной площади поверхности, приближающейся к точечным изъявлениям, что особенно опасно для котельного оборудования (образование в результате такой коррозии сквозных свищей); 2) избирательная коррозия, когда разрушается одна из составных частей сплава; например, в трубах конденсаторов турбин, изготовленных из латуни (сплав меди с цинком), при охлаждении их морской водой происходит удаление из латуни цинка, в результате чего латунь делается хрупкой; 3) межкристаллитная коррозия, возникающая преимущественно в недостаточно плотных заклепочных и вальцовочных соединениях паровых котлов при агрессивных свойствах котловой воды с одновременными чрезмерными механическими напряжениями в этих участках металла. Этот вид коррозии характеризуется появлением трещин, идущих по границам кристаллов металла, что делает металл хрупким.

4. Какие поддерживают водно-химические режимы в котлах и отчего они зависят?

Нормальным режимом работы паровых котлов называется такой режим, при котором обеспечивается:

а) получение чистого пара; б) отсутствие на поверхностях нагрева котлов солевых отложений (накипи) и прикипания образовавшегося шлама (так называемой вторичной накипи); в) предотвращение всех типов коррозии котельного метала и пароконденсаторного тракта, несущего продукты коррозии в котел.

Перечисленные требования удовлетворяются путем принятия мер в двух основных направлений:

а) при подготовке исходной воды; б) при регулировании качества котловой воды.

Подготовка исходной воды в зависимости от ее качества и требований, связанных с конструкцией котла, может осуществляться путем:

а) докотловой обработки воды с удалением взвешенных и органических веществ, железа, накипеобразователей (Са, Mg), свободной и связанной углекислоты, кислорода, снижения щелочности и солесодержания (известкование, водород – катионтрование или сббесоливание и пр.);

б) внутрикотловой обработки воды (с дозировкой реагентов или обработкой воды магнитным полем при обязательном и надежном удалении шлама).

Регулирование качества котловой воды осуществляется путем продувки котлов, значительного сокращения размеров продувки можно достигнуть путем улучшения сепарационных устройств котла: ступенчатого испарения, выносных циклонов, промывки пара питательной водой. Совокупность осуществления перечисленных мероприятий, обеспечивающих нормальную работу котлов, называют вода – химическим режимом работы котельной.

Применение любого метода обработки воды: внутри котлового, до котлового с последующей коррекционной обработкой химически очищенной или питательной воды – требует осуществления продувки паровых котлов.

В условиях эксплуатации котлов различают два способа продувки котлов: периодическая и непрерывная.

Периодическая продувка из нижних точек котла осуществляется для удаления грубодисперсного шлама, оседающего в нижних коллекторах (барабанах) котла или контурах с вялой циркуляцией воды. Производится она по установленному графику в зависимости от степени зашламленности котловой воды, но не реже одного раза в смену.

Непрерывная продувка котлов обеспечивает необходимую чистоту пара, поддерживая определенный солевой состав котловой воды.

5. Опишите устройство зернистых осветительных фильтров и принцип их работы

Осветление воды фильтрованием широко применяется в технологии обработки воды, для этого осветляемую воду фильтрует через слой зернистого материала (кварцевого песка, дробленого антрацита, керамзита и др.), загруженного в фильтр.

Классификация фильтров по ряду основных признаков :

скорость фильтрации:

– медленные (0,1 – 0,3 м/ч);

– скорые (5 – 12 м/ч);

– сверхскоростные (36 – 100 м/ч);

давление, под которым они работают:

– открытые или безнапорные;

– напорные;

количество фильтрующих слоев:

– однослойные;

– двухслойные;

– многослойные.

Наиболее эффективны и экономичны многослойные фильтры, в которых для увеличения грязеемкости и эффективности фильтрации загрузку составляют из материалов с различной плотностью и размером частиц: сверху слоя – крупные легкие частицы, внизу – мелкие тяжелые. При нисходящем направлении фильтрования крупные загрязнения задерживаются в верхнем слое загрузки, а оставшиеся мелкие – в нижнем. Таким образом, работает весь объем загрузки. Осветительные фильтры эффективны при задержании частиц размером > 10 мкм.

Вода, содержащая взвешенные частицы, двигаясь через зернистую загрузку, задерживающую взвешенные частицы, осветляется. Эффективность процесса зависит от физика – химических свойств примесей, фильтрующей загрузки и гидродинамических факторов. В толщине загрузки происходит накапливание загрязнений, уменьшается свободный объем пор и возрастает гидравлическое сопротивление загрузки, что приводит к росту потерь напора в загрузке.

В общем виде, процесс фильтрации можно условно разбить на несколько стадий: перенос частиц из потока воды на поверхность фильтрующего материала; закрепление частиц на зернах и в щелях между ними; отрыв закрепленных частиц с переходом их обратно в поток воды.

Извлечение примесей из воды и закрепление их на зернах загрузки происходит под действием сил адгезии. Осадок, формирующийся на частицах загрузки, имеет непрочную структуру, которая под влиянием гидродинамических сил может разрушатся. Некоторая часть ранее прилипших частиц отрывается от зерен загрузки в виде мелких хлопьев и переносится в последующие слои загрузки (суффозия), где вновь задерживается в поровых каналах. Таким образом, процесс осветления воды нужно рассматривать как суммарный результат процесса адгезии и суффозии. Осветление в каждом элементарном слое загрузки происходит до тех пор, пока интенсивность прилипания частиц превышает интенсивность отрыва.

По мере насыщения верхних слоев загрузки процесс фильтрации переходит на нижерасположенные, зона фильтрации как бы сходит по направлению потока от области, где фильтрующий материал уже насыщен загрязнением и преобладает процесс суффозии к области свежей загрузки. Затем наступает момент, когда весь слой загрузки фильтра оказывается насыщенным загрязнениями воды и требуемая степень осветвления воды не обеспечивается. Концентрация взвеси на выходе загрузки начинает возрастать.

Время, в течение которого достигается осветление воды до заданной степени, называется временем защитного действия загрузки. При его достижении предельной потери напора осветительный фильтр необходимо перевести в режим взрыхляющей промывки, когда загрузка промывается обратным потоком воды, а загрязнения сбрасываются в дренаж.

Возможность задержания фильтром грубой взвеси зависит, в основном, от ее массы; тонкой взвеси и коллоидных частиц – от поверхностных сил. Важное значение имеет заряд взвешенных частиц, так как коллоидные частицы одноименного заряда не могут объединяться в конгломераты, укрупнятся и оседать: заряд препятствует их сближению. Преодолевается это «отчуждение» частиц искусственным коагулированием. Как правило, коагулирование (иногда, дополнительно, флокулирование) производится в отстойниках – осветлителях. Часто этот процесс совмещается с умягчением воды известкованием, или сода – известкованием, или едконатровым умягчением.

В обычных осветительных фильтрах чаще всего наблюдается пленочное фильтрование. Объемное фильтрование организуют в двухслойных фильтрах и в так называемых контактных осветлителях. В фильтр засыпают нижний слой кварцевого песка с размером 0.65 – 0.75 мм и верхний слой антрацита с размером зерен 1,0 – 1.25 мм. На верхней поверхности слоя крупных зерен антрацита пленка не образуется. Взвешенные вещества, прошедшие слой антрацита, задерживаются нижнем слоем песка.

При взрыхляющей промывке фильтра слои песка и антрацита не перемешиваются, так как плотность антрацита вдвое меньше плотности кварцевого песка.

6. Опишите процесс умягчение воды по методу катионного обмена

По теории электролитической диссоциации молекулы некоторых веществ находящихся в водном растворе распадаются на положительно и отрицательно заряженные ионы – катионы и анионы.

При прохождении такого раствора через фильтр, содержащий трудно растворимый материал (катионит), способный к поглощению катионов раствора, в том числе Са и Mg, и выделяющий вместо них из своего состава катионы Na или Н, происходит водоумягчение. Вода почти полностью освобождается от Са и Mg, и ее жесткость понижается до 0,1°

Na – катионирование. При этом способе растворенные в воде соли кальция и магния при фильтрации через катионитовый материал обменивают Са и Mg на Na; в итоге получаются только натриевые соли, обладающие большой растворимостью. Формула катионитового материала условно обозначается буквой R.

Катионитовыми материалами являются: глауконит, сульфоуголь и синтетические смолы. Наибольшим распространением в настоящее время пользуется сульфоуголь, который получается после обработки бурого или каменного угля дымящейся серной кислоты.

Емкостью катионитового материала называется предел его обменной способности, после чего в результате израсходования катионов Na их требуется восстанавливать путем регенерации.

Емкость измеряется тонна – градусами (т-град) накипеобразователей, считая на 1 м 3 катионового материала. Тонна – градусы получаются в результате перемножения расхода очищаемой воды, выраженного в тоннах, на жесткость этой воды в градусах жесткости.

Регенерация производится 5 – 10%-ным раствором поваренной соли, пропускаемым через катионитовый материал.

Характеристикой особенностью Na – катионирования является отсутствие солей, выпадающих в осадок. Анионы солей жесткости целиком направляется в котел. Это обстоятельство вызывает необходимость повышения количества продувочной воды. Умягчение воды при Na – катионировании получается достаточно глубокое, жесткость питательной воды может, доводится до 0° (практически 0,05–01°), щелочность же не отличается от карбонатной жесткости исходной воды.

К недостаткам Na – катионирования следует отнести получение повышенной щелочности в тех случаях, когда имеется значительное количество солей временной жесткости в исходной воде.

Ограничеватся одним Na – катионированием возможно при карбонатной жесткости воды, не превышающей 3–6°. В противном случае приходится значительно увеличивать количество продувочной воды, что будет создавать уже большие тепловые потери. Обычно количество продувочной воды не превышает 5–10% от общего ее расхода, идущего на питание котла.

Метод катионирования требует весьма простого обслуживание и доступен обычному персоналу котельной без дополнительного привлечения химика.

Конструкция катионитового фильтра


Н – Na – катионирование . Если катионитовый фильтр, наполненный сульфоуглем, регенерировать не раствором поваренной соли, а раствором серной кислоты, то обмен будет происходить между катионами Ca и Mg, находящимися в очищаемой воде, и катионами Н сульфоугля.

Вода, подготовленная таким образом, также имея ничтожно малую жесткость, одновременно получает кислую и таким образом, непригодна для питания паровых котлов, причем кислотность воды равна некарбонатной жесткости воды.

Комбинируя совместно Na и Н – катионитовое водоумягчение, можно получить хорошие результаты. Жесткость воды, приготовленной Н-Na – катионитовым способом, не превышает 0,1° при щелочности 4–5°.

7. Опишите принципиальные схемы водоподготовки

Осуществление необходимых изменений в составе обрабатываемой воды возможно по различным технологическим схемам, то выбор одной из них делают на основе сравнительных техника – экономических расчетов по намеченным вариантам схем.

В результате химической обработки природных вод, осуществляемой на водоподготовительных установках, могут происходить следующие основные изменения их состава: 1) осветление воды; 2) умягчение воды; 3) снижение щелочности воды; 4) уменьшение солесодержания воды; 5) полное обессоливание воды; 6) дегазация воды. Схемы обработки воды, необходимые для осуществления

перечисленных изменений ее состава, могут включать различные процессы, которые сводятся к следующим трем основным группам: 1) методы осаждения; 2) механическое фильтрование воды; 3) ионообменное фильтрование воды.

Применение технологических схем водоподготовительных установок предусматривают обычно комбинирование различных методов обработки воды.

На рисунки представлены возможные схемы комбинированных водоподготовительных установок путем применения указанных трех категорий процессов обработки воды. В этих схемах даны только основные аппараты. Без вспомогательного оборудования, а также не указаны фильтры второй и третий ступени.

Схема водоподготовительных установок

1-сырая вода; 2-осветитель; 3-механический фильтр; 4-промежуточный бак; 5-насос; 6-дозатор коагулянта; 7-Nа – катионитный фильтр; 8- Н – катионитный фильтр; 9 – декарбонизатор; 10 – ОН – анионитный фильтр; 11 – обработанная вода.

Ионообменное фильтрование является обязательной конечной стадией обработки воды при всех возможных вариантах схем и осуществляется в виде Na – катионирования, Н-Na-катионирования и Н-ОН – ионирования воды. Осветлитель 2 предусматривает два основных варианта его использования: 1) осветление воды, когда в нем осуществляются процессы коагуляции и отстаивания воды и 2) умягчение воды, когда помимо коагуляции, в нем проводится известкование, а также одновременно с известкованием магнезиальное обескремнивание воды.

В зависимости от характеристики природных вод по содержанию в них взвешенных веществ возможны три группы технологических схем их обработки:

1) Подземные артезианские воды (на рис. обозначены 1а), в которых практически обычно отсутствуют взвешенные вещества, не требуют их осветления и поэтому обработка таких вод может ограничеватся только ионообменным фильтрованием по одной из трех схем в зависимости от предъявляемых требований к обработанной воде: а) Na – катионирование, если требуется только умягчение воды; б) Н-Na – катионирование, если требуется, помимо умягчения, снижение щелочности или уменьшение солесодержание воды; в) Н-ОН – ионирование, если требуется глубокое обессоливание воды.

2) поверхностные воды с незначительным содержанием взвешенных веществ, (на рис. они обозначены 1б), могут обрабатываться по так называемым прямоточным напорным схемам, в которых коагуляция и осветление в механических фильтрах комбинируют с одной из схем ионообменного фильтрования.

3) поверхностные воды с относительно большим количеством взвешенных веществ (на рис. обозначены 1в), освобождаются от них в осветление, после чего подвергаются механическому фильтрованию и далее комбинируются с одной из схем ионообменного фильтрования. При этом часто. В целях разгрузки ионообменной части водоподготовительной установки, одновременно с коагуляцией осуществляют в осветлителе частичное умягчение воды и снижение ее солесодержание путем известкования и магнезиального обескремнивания. Такие комбинированные схемы особенно целесообразны при обработки сильно минерализованных вод, поскольку даже при частичном их обессоливании методом ионного обмена требуются большие

Решение :

Определяем межпромывочных период фильтра, ч

где: h 0 – высота фильтрующего слоя, 1,2 м

Гр – грязеемкость фильтрующего материала, 3,5 кг/м 3 .

Значение Гр может изменятся в широких пределах в зависимости от характера взвешенных веществ, их фракционного состава, фильтрующего материала и др. При расчетах можно принимать Гр= 3? 4 кг/м 3 , в среднем 3,5 кг/м 3 ,

U p – скорость фильтрования, 4,1 м/ч,

С в – концентрация, взвешенных веществ, 7 мг/л,

Количество промывок фильтров в сутки определяем по формуле:


где: Т 0 – межпромывочный период, 146,34 ч,

t 0 –время простоя фильтра на промывке, обычно 0,3 – 0,5 ч,

Определим необходимую площадь фильтрования:

где: U-скорость фильтрования, 4,1 м/ч,

Q – Производительность, 15 м 3 /ч,

В соответствии с правилами и нормами проектирования водоподготовительных установок количество фильтров должно быть не менее трех, тогда площадь одного фильтра составит:

где: m – количество фильтров.

По найденной площади одного фильтра находим требуемый диаметр фильтра по таблице: диаметр d = 1500 мм, площади фильтрования f = 1,72 м 2 .

Уточним количество фильтров:

Если количество фильтров меньше межпромывочного периода m 0 ≤ T 0 +t 0 (в нашем примере 2 < 167,25 + 0,5), то в резерв принимается один фильтр для вывода на ремонт. Всего фильтров будет установлено m ф = 2+1=3 фильтра.

В расчет фильтра входит определение расхода воды на собственные нужды, т.е. на промывку фильтра и на отмывку фильтра после промывки.

Расход воды на промывку фильтра и взрыхление определяется по формуле:

где: i- интенсивность взрыхления, л/(с * м 2); обычно i = 12 л/(с * м 2);

t – время промывки, мин. t = 15 мин.

Определяем средний расход воды на промывку работающих фильтров по формуле:


Определим расход на спуск в дренаж первого фильтра со скоростью 4 м/ч в течение 10 минут перед включением в работу:

Средний расход воды на отмывку работающих фильтров:

Потребное количество воды для фильтровальной установки с учетом расхода на собственные нужды:

Q п = g ср + g ср.отм + Q

Q п = 0,9 + 0,018 + 15 = 15,9 м 3 /ч

Литература

1. «Водоподготовка». В.Ф. Вихрев и М.С. Шкроб. Москва 1973 год.

2. «Справочник по водоподготовке котельных установок». О.В. Лифшиц. Москва 1976

3. «Водоподготовка». Б.Н. Фрог, А.П. Левченко. Москва 1996 год.

4. «Водоподготовка». С.М. Гурвич. Москва 1961 год.

Понравилась статья? Поделитесь с друзьями!