Trigonometric equations with tangent examples. Solving trigonometric equations


Examples:

\(2\sin(⁡x) = \sqrt(3)\)
tg\((3x)=-\) \(\frac(1)(\sqrt(3))\)
\(4\cos^2⁡x+4\sin⁡x-1=0\)
\(\cos⁡4x+3\cos⁡2x=1\)

How to solve trigonometric equations:

Any trigonometric equation should be reduced to one of the following types:

\(\sin⁡t=a\), \(\cos⁡t=a\), tg\(t=a\), ctg\(t=a\)

where \(t\) is an expression with an x, \(a\) is a number. Such trigonometric equations are called the simplest. They can be easily solved using () or special formulas:


Example . Solve the trigonometric equation \(\sin⁡x=-\)\(\frac(1)(2)\).
Solution:

Answer: \(\left[ \begin(gathered)x=-\frac(π)(6)+2πk, \\ x=-\frac(5π)(6)+2πn, \end(gathered)\right.\) \(k,n∈Z\)

What each symbol means in the formula for the roots of trigonometric equations, see.

Attention! The equations \(\sin⁡x=a\) and \(\cos⁡x=a\) have no solutions if \(a ϵ (-∞;-1)∪(1;∞)\). Because sine and cosine for any x are greater than or equal to \(-1\) and less than or equal to \(1\):

\(-1≤\sin x≤1\) \(-1≤\cos⁡x≤1\)

Example . Solve the equation \(\cos⁡x=-1,1\).
Solution: \(-1,1<-1\), а значение косинуса не может быть меньше \(-1\). Значит у уравнения нет решения.
Answer : no solutions.


Example . Solve the trigonometric equation tg\(⁡x=1\).
Solution:

Let's solve the equation using the number circle. For this:
1) Construct a circle)
2) Construct the axes \(x\) and \(y\) and the tangent axis (it passes through the point \((0;1)\) parallel to the axis \(y\)).
3) On the tangent axis, mark the point \(1\).
4) Connect this point and the origin of coordinates - a straight line.
5) Mark the intersection points of this line and the number circle.
6) Let's sign the values ​​of these points: \(\frac(π)(4)\) ,\(\frac(5π)(4)\)
7) Write down all the values ​​of these points. Since they are located at a distance of exactly \(π\) from each other, all values ​​can be written in one formula:

Answer: \(x=\)\(\frac(π)(4)\) \(+πk\), \(k∈Z\).

Example . Solve the trigonometric equation \(\cos⁡(3x+\frac(π)(4))=0\).
Solution:


Let's use the number circle again.
1) Construct a circle, axes \(x\) and \(y\).
2) On the cosine axis (\(x\) axis), mark \(0\).
3) Draw a perpendicular to the cosine axis through this point.
4) Mark the intersection points of the perpendicular and the circle.
5) Let's sign the values ​​of these points: \(-\) \(\frac(π)(2)\),\(\frac(π)(2)\).
6) We write down the entire value of these points and equate them to the cosine (to what is inside the cosine).

\(3x+\)\(\frac(π)(4)\) \(=±\)\(\frac(π)(2)\) \(+2πk\), \(k∈Z\)

\(3x+\)\(\frac(π)(4)\) \(=\)\(\frac(π)(2)\) \(+2πk\) \(3x+\)\(\frac( π)(4)\) \(=-\)\(\frac(π)(2)\) \(+2πk\)

8) As usual, we will express \(x\) in equations.
Don't forget to treat numbers with \(π\), as well as \(1\), \(2\), \(\frac(1)(4)\), etc. These are the same numbers as all the others. No numerical discrimination!

\(3x=-\)\(\frac(π)(4)\) \(+\)\(\frac(π)(2)\) \(+2πk\) \(3x=-\)\ (\frac(π)(4)\) \(+\)\(\frac(π)(2)\) \(+2πk\)
\(3x=\)\(\frac(π)(4)\) \(+2πk\) \(|:3\) \(3x=-\)\(\frac(3π)(4)\) \(+2πk\) \(|:3\)
\(x=\)\(\frac(π)(12)\) \(+\)\(\frac(2πk)(3)\) \(x=-\)\(\frac(π)( 4)\) \(+\)\(\frac(2πk)(3)\)

Answer: \(x=\)\(\frac(π)(12)\) \(+\)\(\frac(2πk)(3)\) \(x=-\)\(\frac(π)( 4)\) \(+\)\(\frac(2πk)(3)\) , \(k∈Z\).

Reducing trigonometric equations to the simplest is a creative task; here you need to use both and special methods for solving equations:
- Method (the most popular in the Unified State Examination).
- Method.
- Method of auxiliary arguments.


Let's consider an example of solving the quadratic trigonometric equation

Example . Solve the trigonometric equation \(2\cos^2⁡x-5\cos⁡x+2=0\)
Solution:

\(2\cos^2⁡x-5\cos⁡x+2=0\)

Let's make the replacement \(t=\cos⁡x\).

Our equation has become typical. You can solve it using .

\(D=25-4 \cdot 2 \cdot 2=25-16=9\)

\(t_1=\)\(\frac(5-3)(4)\) \(=\)\(\frac(1)(2)\) ; \(t_2=\)\(\frac(5+3)(4)\) \(=2\)

We make a reverse replacement.

\(\cos⁡x=\)\(\frac(1)(2)\); \(\cos⁡x=2\)

We solve the first equation using the number circle.
The second equation has no solutions because \(\cos⁡x∈[-1;1]\) and cannot be equal to two for any x.

Let's write down all the numbers lying on at these points.

Answer: \(x=±\)\(\frac(π)(3)\) \(+2πk\), \(k∈Z\).

An example of solving a trigonometric equation with the study of ODZ:

Example (USE) . Solve the trigonometric equation \(=0\)

\(\frac(2\cos^2⁡x-\sin(⁡2x))(ctg x)\)\(=0\)

There is a fraction and there is a cotangent - that means we need to write it down. Let me remind you that a cotangent is actually a fraction:

ctg\(x=\)\(\frac(\cos⁡x)(\sin⁡x)\)

Therefore, the ODZ for ctg\(x\): \(\sin⁡x≠0\).

ODZ: ctg\(x ≠0\); \(\sin⁡x≠0\)

\(x≠±\)\(\frac(π)(2)\) \(+2πk\); \(x≠πn\); \(k,n∈Z\)

Let us mark the “non-solutions” on the number circle.

\(\frac(2\cos^2⁡x-\sin(⁡2x))(ctg x)\)\(=0\)

Let's get rid of the denominator in the equation by multiplying it by ctg\(x\). We can do this, since we wrote above that ctg\(x ≠0\).

\(2\cos^2⁡x-\sin⁡(2x)=0\)

Let's apply the double angle formula for sine: \(\sin⁡(2x)=2\sin⁡x\cos⁡x\).

\(2\cos^2⁡x-2\sin⁡x\cos⁡x=0\)

If your hands reach out to divide by the cosine, pull them back! You can divide by an expression with a variable if it is definitely not equal to zero (for example, these: \(x^2+1.5^x\)). Instead, let's put \(\cos⁡x\) out of brackets.

\(\cos⁡x (2\cos⁡x-2\sin⁡x)=0\)

Let’s “split” the equation into two.

\(\cos⁡x=0\); \(2\cos⁡x-2\sin⁡x=0\)

Let's solve the first equation using the number circle. Divide the second equation by \(2\) and move \(\sin⁡x\) to the right side.

\(x=±\)\(\frac(π)(2)\) \(+2πk\), \(k∈Z\). \(\cos⁡x=\sin⁡x\)

The resulting roots are not included in the ODZ. Therefore, we will not write them down in response.
The second equation is typical. Let's divide it by \(\sin⁡x\) (\(\sin⁡x=0\) cannot be a solution to the equation because in this case \(\cos⁡x=1\) or \(\cos⁡ x=-1\)).

We use a circle again.


\(x=\)\(\frac(π)(4)\) \(+πn\), \(n∈Z\)

These roots are not excluded by ODZ, so you can write them in the answer.

Answer: \(x=\)\(\frac(π)(4)\) \(+πn\), \(n∈Z\).

When solving many mathematical problems, especially those that occur before grade 10, the order of actions performed that will lead to the goal is clearly defined. Such problems include, for example, linear and quadratic equations, linear and quadratic inequalities, fractional equations and equations that reduce to quadratic ones. The principle of successfully solving each of the mentioned problems is as follows: you need to establish what type of problem you are solving, remember the necessary sequence of actions that will lead to the desired result, i.e. answer and follow these steps.

It is obvious that success or failure in solving a particular problem depends mainly on how correctly the type of equation being solved is determined, how correctly the sequence of all stages of its solution is reproduced. Of course, in this case it is necessary to have the skills to perform identical transformations and calculations.

The situation is different with trigonometric equations. It is not at all difficult to establish the fact that the equation is trigonometric. Difficulties arise when determining the sequence of actions that would lead to the correct answer.

It is sometimes difficult to determine its type based on the appearance of an equation. And without knowing the type of equation, it is almost impossible to choose the right one from several dozen trigonometric formulas.

To solve a trigonometric equation, you need to try:

1. bring all functions included in the equation to “the same angles”;
2. bring the equation to “identical functions”;
3. factor the left side of the equation, etc.

Let's consider basic methods for solving trigonometric equations.

I. Reduction to the simplest trigonometric equations

Solution diagram

Step 1. Express a trigonometric function in terms of known components.

Step 2. Find the function argument using the formulas:

cos x = a; x = ±arccos a + 2πn, n ЄZ.

sin x = a; x = (-1) n arcsin a + πn, n Є Z.

tan x = a; x = arctan a + πn, n Є Z.

ctg x = a; x = arcctg a + πn, n Є Z.

Step 3. Find the unknown variable.

Example.

2 cos(3x – π/4) = -√2.

Solution.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Answer: ±π/4 + π/12 + 2πn/3, n Є Z.

II. Variable replacement

Solution diagram

Step 1. Reduce the equation to algebraic form with respect to one of the trigonometric functions.

Step 2. Denote the resulting function by the variable t (if necessary, introduce restrictions on t).

Step 3. Write down and solve the resulting algebraic equation.

Step 4. Make a reverse replacement.

Step 5. Solve the simplest trigonometric equation.

Example.

2cos 2 (x/2) – 5sin (x/2) – 5 = 0.

Solution.

1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;

2sin 2 (x/2) + 5sin (x/2) + 3 = 0.

2) Let sin (x/2) = t, where |t| ≤ 1.

3) 2t 2 + 5t + 3 = 0;

t = 1 or e = -3/2, does not satisfy the condition |t| ≤ 1.

4) sin(x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Answer: x = π + 4πn, n Є Z.

III. Equation order reduction method

Solution diagram

Step 1. Replace this equation with a linear one, using the formula for reducing the degree:

sin 2 x = 1/2 · (1 – cos 2x);

cos 2 x = 1/2 · (1 + cos 2x);

tg 2 x = (1 – cos 2x) / (1 + cos 2x).

Step 2. Solve the resulting equation using methods I and II.

Example.

cos 2x + cos 2 x = 5/4.

Solution.

1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

3/2 cos 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Answer: x = ±π/6 + πn, n Є Z.

IV. Homogeneous equations

Solution diagram

Step 1. Reduce this equation to the form

a) a sin x + b cos x = 0 (homogeneous equation of the first degree)

or to the view

b) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (homogeneous equation of the second degree).

Step 2. Divide both sides of the equation by

a) cos x ≠ 0;

b) cos 2 x ≠ 0;

and get the equation for tan x:

a) a tan x + b = 0;

b) a tan 2 x + b arctan x + c = 0.

Step 3. Solve the equation using known methods.

Example.

5sin 2 x + 3sin x cos x – 4 = 0.

Solution.

1) 5sin 2 x + 3sin x · cos x – 4(sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

2) tg 2 x + 3tg x – 4 = 0.

3) Let tg x = t, then

t 2 + 3t – 4 = 0;

t = 1 or t = -4, which means

tg x = 1 or tg x = -4.

From the first equation x = π/4 + πn, n Є Z; from the second equation x = -arctg 4 + πk, k Є Z.

Answer: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

V. Method of transforming an equation using trigonometric formulas

Solution diagram

Step 1. Using all possible trigonometric formulas, reduce this equation to an equation solved by methods I, II, III, IV.

Step 2. Solve the resulting equation using known methods.

Example.

sin x + sin 2x + sin 3x = 0.

Solution.

1) (sin x + sin 3x) + sin 2x = 0;

2sin 2x cos x + sin 2x = 0.

2) sin 2x (2cos x + 1) = 0;

sin 2x = 0 or 2cos x + 1 = 0;

From the first equation 2x = π/2 + πn, n Є Z; from the second equation cos x = -1/2.

We have x = π/4 + πn/2, n Є Z; from the second equation x = ±(π – π/3) + 2πk, k Є Z.

As a result, x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Answer: x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

The ability and skill to solve trigonometric equations is very important, their development requires significant effort, both on the part of the student and on the part of the teacher.

Many problems of stereometry, physics, etc. are associated with the solution of trigonometric equations. The process of solving such problems embodies many of the knowledge and skills that are acquired by studying the elements of trigonometry.

Trigonometric equations occupy an important place in the process of learning mathematics and personal development in general.

Still have questions? Don't know how to solve trigonometric equations?
To get help from a tutor -.
The first lesson is free!

blog.site, when copying material in full or in part, a link to the original source is required.

When solving many mathematical problems, especially those that occur before grade 10, the order of actions performed that will lead to the goal is clearly defined. Such problems include, for example, linear and quadratic equations, linear and quadratic inequalities, fractional equations and equations that reduce to quadratic ones. The principle of successfully solving each of the mentioned problems is as follows: you need to establish what type of problem you are solving, remember the necessary sequence of actions that will lead to the desired result, i.e. answer and follow these steps.

It is obvious that success or failure in solving a particular problem depends mainly on how correctly the type of equation being solved is determined, how correctly the sequence of all stages of its solution is reproduced. Of course, in this case it is necessary to have the skills to perform identical transformations and calculations.

The situation is different with trigonometric equations. It is not at all difficult to establish the fact that the equation is trigonometric. Difficulties arise when determining the sequence of actions that would lead to the correct answer.

It is sometimes difficult to determine its type based on the appearance of an equation. And without knowing the type of equation, it is almost impossible to choose the right one from several dozen trigonometric formulas.

To solve a trigonometric equation, you need to try:

1. bring all functions included in the equation to “the same angles”;
2. bring the equation to “identical functions”;
3. factor the left side of the equation, etc.

Let's consider basic methods for solving trigonometric equations.

I. Reduction to the simplest trigonometric equations

Solution diagram

Step 1. Express a trigonometric function in terms of known components.

Step 2. Find the function argument using the formulas:

cos x = a; x = ±arccos a + 2πn, n ЄZ.

sin x = a; x = (-1) n arcsin a + πn, n Є Z.

tan x = a; x = arctan a + πn, n Є Z.

ctg x = a; x = arcctg a + πn, n Є Z.

Step 3. Find the unknown variable.

Example.

2 cos(3x – π/4) = -√2.

Solution.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Answer: ±π/4 + π/12 + 2πn/3, n Є Z.

II. Variable replacement

Solution diagram

Step 1. Reduce the equation to algebraic form with respect to one of the trigonometric functions.

Step 2. Denote the resulting function by the variable t (if necessary, introduce restrictions on t).

Step 3. Write down and solve the resulting algebraic equation.

Step 4. Make a reverse replacement.

Step 5. Solve the simplest trigonometric equation.

Example.

2cos 2 (x/2) – 5sin (x/2) – 5 = 0.

Solution.

1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;

2sin 2 (x/2) + 5sin (x/2) + 3 = 0.

2) Let sin (x/2) = t, where |t| ≤ 1.

3) 2t 2 + 5t + 3 = 0;

t = 1 or e = -3/2, does not satisfy the condition |t| ≤ 1.

4) sin(x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Answer: x = π + 4πn, n Є Z.

III. Equation order reduction method

Solution diagram

Step 1. Replace this equation with a linear one, using the formula for reducing the degree:

sin 2 x = 1/2 · (1 – cos 2x);

cos 2 x = 1/2 · (1 + cos 2x);

tg 2 x = (1 – cos 2x) / (1 + cos 2x).

Step 2. Solve the resulting equation using methods I and II.

Example.

cos 2x + cos 2 x = 5/4.

Solution.

1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

3/2 cos 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Answer: x = ±π/6 + πn, n Є Z.

IV. Homogeneous equations

Solution diagram

Step 1. Reduce this equation to the form

a) a sin x + b cos x = 0 (homogeneous equation of the first degree)

or to the view

b) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (homogeneous equation of the second degree).

Step 2. Divide both sides of the equation by

a) cos x ≠ 0;

b) cos 2 x ≠ 0;

and get the equation for tan x:

a) a tan x + b = 0;

b) a tan 2 x + b arctan x + c = 0.

Step 3. Solve the equation using known methods.

Example.

5sin 2 x + 3sin x cos x – 4 = 0.

Solution.

1) 5sin 2 x + 3sin x · cos x – 4(sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

2) tg 2 x + 3tg x – 4 = 0.

3) Let tg x = t, then

t 2 + 3t – 4 = 0;

t = 1 or t = -4, which means

tg x = 1 or tg x = -4.

From the first equation x = π/4 + πn, n Є Z; from the second equation x = -arctg 4 + πk, k Є Z.

Answer: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

V. Method of transforming an equation using trigonometric formulas

Solution diagram

Step 1. Using all possible trigonometric formulas, reduce this equation to an equation solved by methods I, II, III, IV.

Step 2. Solve the resulting equation using known methods.

Example.

sin x + sin 2x + sin 3x = 0.

Solution.

1) (sin x + sin 3x) + sin 2x = 0;

2sin 2x cos x + sin 2x = 0.

2) sin 2x (2cos x + 1) = 0;

sin 2x = 0 or 2cos x + 1 = 0;

From the first equation 2x = π/2 + πn, n Є Z; from the second equation cos x = -1/2.

We have x = π/4 + πn/2, n Є Z; from the second equation x = ±(π – π/3) + 2πk, k Є Z.

As a result, x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Answer: x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

The ability and skill to solve trigonometric equations is very important, their development requires significant effort, both on the part of the student and on the part of the teacher.

Many problems of stereometry, physics, etc. are associated with the solution of trigonometric equations. The process of solving such problems embodies many of the knowledge and skills that are acquired by studying the elements of trigonometry.

Trigonometric equations occupy an important place in the process of learning mathematics and personal development in general.

Still have questions? Don't know how to solve trigonometric equations?
To get help from a tutor, register.
The first lesson is free!

website, when copying material in full or in part, a link to the source is required.

Reference information on the trigonometric functions sine (sin x) and cosine (cos x). Geometric definition, properties, graphs, formulas. Table of sines and cosines, derivatives, integrals, series expansions, secant, cosecant. Expressions through complex variables. Connection with hyperbolic functions.

Geometric definition of sine and cosine




|BD|- length of the arc of a circle with center at a point A.
α - angle expressed in radians.

Definition
Sine (sin α) is a trigonometric function depending on the angle α between the hypotenuse and the leg of a right triangle, equal to the ratio of the length of the opposite leg |BC| to the length of the hypotenuse |AC|.

Cosine (cos α) is a trigonometric function depending on the angle α between the hypotenuse and the leg of a right triangle, equal to the ratio of the length of the adjacent leg |AB| to the length of the hypotenuse |AC|.

Accepted notations

;
;
.

;
;
.

Graph of the sine function, y = sin x


Graph of the cosine function, y = cos x


Properties of sine and cosine

Periodicity

Functions y = sin x and y = cos x periodic with period .

Parity

The sine function is odd. The cosine function is even.

Domain of definition and values, extrema, increase, decrease

The sine and cosine functions are continuous in their domain of definition, that is, for all x (see proof of continuity). Their main properties are presented in the table (n - integer).

y = sin x y = cos x
Scope and continuity - ∞ < x < + ∞ - ∞ < x < + ∞
Range of values -1 ≤ y ≤ 1 -1 ≤ y ≤ 1
Increasing
Descending
Maxima, y ​​= 1
Minima, y ​​= - 1
Zeros, y = 0
Intercept points with the ordinate axis, x = 0 y = 0 y = 1

Basic formulas

Sum of squares of sine and cosine

Formulas for sine and cosine from sum and difference



;
;

Formulas for the product of sines and cosines

Sum and difference formulas

Expressing sine through cosine

;
;
;
.

Expressing cosine through sine

;
;
;
.

Expression through tangent

; .

When , we have:
; .

At :
; .

Table of sines and cosines, tangents and cotangents

This table shows the values ​​of sines and cosines for certain values ​​of the argument.

Expressions through complex variables


;

Euler's formula

{ -∞ < x < +∞ }

Secant, cosecant

Inverse functions

The inverse functions of sine and cosine are arcsine and arccosine, respectively.

Arcsine, arcsin

Arccosine, arccos

References:
I.N. Bronstein, K.A. Semendyaev, Handbook of mathematics for engineers and college students, “Lan”, 2009.

The simplest trigonometric equations are solved, as a rule, using formulas. Let me remind you that the simplest trigonometric equations are:

sinx = a

cosx = a

tgx = a

ctgx = a

x is the angle to be found,
a is any number.

And here are the formulas with which you can immediately write down the solutions to these simplest equations.

For sine:


For cosine:

x = ± arccos a + 2π n, n ∈ Z


For tangent:

x = arctan a + π n, n ∈ Z


For cotangent:

x = arcctg a + π n, n ∈ Z

Actually, this is the theoretical part of solving the simplest trigonometric equations. Moreover, everything!) Nothing at all. However, the number of errors on this topic is simply off the charts. Especially if the example deviates slightly from the template. Why?

Yes, because a lot of people write down these letters, without understanding their meaning at all! He writes down with caution, lest something happen...) This needs to be sorted out. Trigonometry for people, or people for trigonometry, after all!?)

Let's figure it out?

One angle will be equal to arccos a, second: -arccos a.

And it will always work out this way. For any A.

If you don’t believe me, hover your mouse over the picture, or touch the picture on your tablet.) I changed the number A to something negative. Anyway, we got one corner arccos a, second: -arccos a.

Therefore, the answer can always be written as two series of roots:

x 1 = arccos a + 2π n, n ∈ Z

x 2 = - arccos a + 2π n, n ∈ Z

Let's combine these two series into one:

x= ± arccos a + 2π n, n ∈ Z

And that's all. We have obtained a general formula for solving the simplest trigonometric equation with cosine.

If you understand that this is not some kind of superscientific wisdom, but just a shortened version of two series of answers, You will also be able to handle tasks “C”. With inequalities, with selecting roots from a given interval... There the answer with a plus/minus does not work. But if you treat the answer in a businesslike manner and break it down into two separate answers, everything will be resolved.) Actually, that’s why we’re looking into it. What, how and where.

In the simplest trigonometric equation

sinx = a

we also get two series of roots. Always. And these two series can also be recorded in one line. Only this line will be trickier:

x = (-1) n arcsin a + π n, n ∈ Z

But the essence remains the same. Mathematicians simply designed a formula to make one instead of two records of series of roots. That's all!

Let's check the mathematicians? And you never know...)

In the previous lesson, the solution (without any formulas) of a trigonometric equation with sine was discussed in detail:

The answer resulted in two series of roots:

x 1 = π /6 + 2π n, n ∈ Z

x 2 = 5π /6 + 2π n, n ∈ Z

If we solve the same equation using the formula, we get the answer:

x = (-1) n arcsin 0.5 + π n, n ∈ Z

Actually, this is an unfinished answer.) The student must know that arcsin 0.5 = π /6. The complete answer would be:

x = (-1)n π /6+ π n, n ∈ Z

This raises an interesting question. Reply via x 1; x 2 (this is the correct answer!) and through lonely X (and this is the correct answer!) - are they the same thing or not? We'll find out now.)

We substitute in the answer with x 1 values n =0; 1; 2; etc., we count, we get a series of roots:

x 1 = π/6; 13π/6; 25π/6 and so on.

With the same substitution in response with x 2 , we get:

x 2 = 5π/6; 17π/6; 29π/6 and so on.

Now let's substitute the values n (0; 1; 2; 3; 4...) into the general formula for single X . That is, we raise minus one to the zero power, then to the first, second, etc. Well, of course, we substitute 0 into the second term; 1; 2 3; 4, etc. And we count. We get the series:

x = π/6; 5π/6; 13π/6; 17π/6; 25π/6 and so on.

That's all you can see.) The general formula gives us exactly the same results as are the two answers separately. Just everything at once, in order. The mathematicians were not fooled.)

Formulas for solving trigonometric equations with tangent and cotangent can also be checked. But we won’t.) They are already simple.

I wrote out all this substitution and checking specifically. Here it is important to understand one simple thing: there are formulas for solving elementary trigonometric equations, just a short summary of the answers. For this brevity, we had to insert plus/minus into the cosine solution and (-1) n into the sine solution.

These inserts do not interfere in any way in tasks where you just need to write down the answer to an elementary equation. But if you need to solve an inequality, or then you need to do something with the answer: select roots on an interval, check for ODZ, etc., these insertions can easily unsettle a person.

So what should I do? Yes, either write the answer in two series, or solve the equation/inequality using the trigonometric circle. Then these insertions disappear and life becomes easier.)

We can summarize.

To solve the simplest trigonometric equations, there are ready-made answer formulas. Four pieces. They are good for instantly writing down the solution to an equation. For example, you need to solve the equations:


sinx = 0.3

Easily: x = (-1) n arcsin 0.3 + π n, n ∈ Z


cosx = 0.2

No problem: x = ± arccos 0.2 + 2π n, n ∈ Z


tgx = 1.2

Easily: x = arctan 1,2 + π n, n ∈ Z


ctgx = 3.7

One left: x= arcctg3,7 + π n, n ∈ Z

cos x = 1.8

If you, shining with knowledge, instantly write the answer:

x= ± arccos 1.8 + 2π n, n ∈ Z

then you are already shining, this is... that... from a puddle.) Correct answer: there are no solutions. Don't understand why? Read what arc cosine is. In addition, if on the right side of the original equation there are tabular values ​​of sine, cosine, tangent, cotangent, - 1; 0; √3; 1/2; √3/2 and so on. - the answer through the arches will be unfinished. Arches must be converted to radians.

And if you come across inequality, like

then the answer is:

x πn, n ∈ Z

there is rare nonsense, yes...) Here you need to solve using the trigonometric circle. What we will do in the corresponding topic.

For those who heroically read to these lines. I simply cannot help but appreciate your titanic efforts. Bonus for you.)

Bonus:

When writing down formulas in an alarming combat situation, even seasoned nerds often get confused about where πn, And where 2π n. Here's a simple trick for you. In everyone formulas worth πn. Except for the only formula with arc cosine. It stands there 2πn. Two peen. Keyword - two. In this same formula there are two sign at the beginning. Plus and minus. Here and there - two.

So if you wrote two sign before the arc cosine, it’s easier to remember what will happen at the end two peen. And it also happens the other way around. The person will miss the sign ± , gets to the end, writes correctly two Pien, and he’ll come to his senses. There's something ahead two sign! The person will return to the beginning and correct the mistake! Like this.)

If you like this site...

By the way, I have a couple more interesting sites for you.)

You can practice solving examples and find out your level. Testing with instant verification. Let's learn - with interest!)

You can get acquainted with functions and derivatives.

Did you like the article? Share with your friends!