Возрастание и убывание функции по графику. Алгоритм нахождения промежутков возрастания и убывания функции

Функция называетсявозрастающей на интервале
, если для любых точек

выполняется неравенство
(большему значению аргумента соответствует большее значение функции).

Аналогично, функция
называетсяубывающей на интервале
, если для любых точек
из этого интервала при выполнении условия
выполняется неравенство
(большему значению аргумента соответствует меньшее значение функции).

Возрастающие на интервале
и убывающие на интервале
функции называютсямонотонными на интервале
.

Знание производной дифференцируемой функции позволяет находить интервалы ее монотонности.

Теорема (достаточное условие возрастания функции).
функции
положительна на интервале
, то функция
монотонно возрастает на этом интервале.

Теорема (достаточное условие убывания функции). Если производная дифференцируемой на интервале
функции
отрицательна на интервале
, то функция
монотонно убывает на этом интервале.

Геометрический смысл этих теорем состоит в том, что на интервалах убывания функции касательные к графику функции образуют с осью
тупые углы, а на интервалах возрастания – острые (см.рис. 1).

Теорема (необходимое условие монотонности функции). Если функция
дифференцируема и
(
) на интервале
, то она не убывает (не возрастает) на этом интервале.

Алгоритм нахождения интервалов монотонности функции
:


Пример. Найти интервалы монотонности функции
.

Точка называетсяточкой максимума функции

такое, что для всех, удовлетворяющих условию
, выполнено неравенство
.

Максимум функции – это значение функции в точке максимума.

На рис 2 показан пример графика функции, имеющей максимумы в точках
.

Точка называетсяточкой минимума функции
, если существует некоторое число
такое, что для всех, удовлетворяющих условию
, выполнено неравенство
. Нарис. 2 функция имеет минимум в точке .

Для максимумов и минимумов есть общее название – экстремумы . Соответственно точки максимума и точки минимума называются точками экстремума .

Функция, определенная на отрезке, может иметь максимум и минимум только в точках, находящихся внутри этого отрезка. Нельзя также путать максимум и минимум функции с ее наибольшим и наименьшим значением на отрезке – это понятия принципиально различные.

В точках экстремума у производной есть особые свойства.

Теорема (необходимое условие экстремума). Пусть в точке функция
имеет экстремум. Тогда либо
не существует, либо
.

Те точки из области определения функции, в которых
не существует или в которых
, называютсякритическими точками функции .

Таким образом, точки экстремума лежат среди критических точек. В общем случае критическая точка не обязана быть точкой экстремума. Если производная функции в некоторой точке равна нулю, то это еще не значит, что в этой точке функция имеет экстремум.

Пример. Рассмотрим
. Имеем
, но точка
не является точкой экстремума (см.рис 3).

Теорема (первое достаточное условие экстремума). Пусть в точке функция
непрерывна, а производная
при переходе через точкуменяет знак. Тогда– точка экстремума: максимума, если знак меняется с «+» на «–», и минимума, если с «–» на «+».

Если при переходе через точку производная не меняет знак, то в точкеэкстремума нет.

Теорема (второе достаточное условие экстремума). Пусть в точке производная дважды дифференцируемой функции
равна нулю (
), а ее вторая производная в этой точке отлична от нуля (
) и непрерывна в некоторой окрестности точки. Тогда– точка экстремума
; при
это точка минимума, а при
это точка максимума.

Алгоритм нахождения экстремумов функции с помощью первого достаточного условия экстремума:

    Найти производную.

    Найти критические точки функции.

    Исследовать знак производной слева и справа от каждой критической точки и сделать вывод о наличии экстремумов.

    Найти экстремальные значения функции.

Алгоритм нахождения экстремумов функции с помощью второго достаточного условия экстремума:


Пример. Найти экстремумы функции
.

1. Найти область определения функции

2.Найти производную функции

3. Приравнять производную к нулю и найти критические точки функции

4. Отметить критические точки на области определения

5. Вычислить знак производной в каждом из полученных интервалов

6. Выяснить поведение функции в каждом интервале.

Пример: Найдите промежутки возрастания и убывания функции f (x ) = и число нулей данной функции на промежутке .

Решение:

1. D(f ) = R

2. f "(x ) =

D(f ") = D(f ) = R

3. Найдём критические точки функции, решив уравнение f "(x ) = 0.

x (x – 10) = 0

критические точки функции x = 0 и x = 10.

4. Определим знак производной.

f "(x ) + – +


f (x ) 0 10 x

в промежутках (-∞; 0) и (10; +∞) производная функции положительна и в точках x = 0 и x = 10 функция f (x ) непрерывна, следовательно, данная функция возрастает на промежутках: (-∞; 0]; .

Определим знак значений функции на концах отрезка.

f (0) = 3, f (0) > 0

f (10) = , f (10) < 0.

Так как на отрезке функция убывает и знак значений функции изменяется, то на этом отрезке один нуль функции.

Ответ: функция f(x) возрастает на промежутках: (-∞; 0]; ;

на промежутке функция имеет один нуль функции.

2. Точки экстремума функции: точки максимума и точки минимума. Необходимое и достаточное условия существования экстремума функции. Правило исследования функции на экстремум .

Определение 1: Точки, в которых производная равна нулю, называются критическими или стационарными.

Определение 2 . Точка называется точкой минимума (максимума) функции , если значение функции в этой точке меньше (больше) ближайших значений функии.

Следует иметь в виду, что максимум и минимум в данном случае являются локальными.

На рис. 1. изображены локальные максимумы и минимумы.

Максимум и минимум функции объединены общим названием: экстремум функции.

Теорема 1. (необходимый признак существования экстремума функции). Если дифференцируемая в точке функция имеет в этой точке максимум или минимум, то ее производная при обращается в нуль, .

Теорема 2. (достаточный признак существования экстремума функции). Если непрерывная функция имеет производную во всех точках некоторого интервала, содержащего критическую точку (за исключением может быть самой этой точки), и если производная при переходе аргумента слева направо через критическую точку меняет знак с плюса на минус, то функция в этой точке имеет максимум, а при переходе знака с минуса на плюс – минимум.

Возрастание и убывание функции

функция y = f (x ) называется возрастающей на отрезке [a , b ], если для любой пары точек х и х" , а ≤ х выполняется неравенство f (x ) f (x" ), и строго возрастающей - если выполняется неравенство f (x ) f (x" ). Аналогично определяется убывание и строгое убывание функции. Например, функция у = х 2 (рис. , а) строго возрастает на отрезке , а

(рис. , б) строго убывает на этом отрезке. Возрастающие функции обозначаются f (x ), а убывающие f (x )↓. Для того чтобы дифференцируемая функция f (x ) была возрастающей на отрезке [а , b ], необходимо и достаточно, чтобы её производная f "(x ) была неотрицательной на [а , b ].

Наряду с возрастанием и убыванием функции на отрезке рассматривают возрастание и убывание функции в точке. Функция у = f (x ) называется возрастающей в точке x 0 , если найдётся такой интервал (α, β), содержащий точку x 0 , что для любой точки х из (α, β), х> x 0 , выполняется неравенство f (x 0) f (x ), и для любой точки х из (α, β), х 0 , выполняется неравенство f (x ) ≤ f (x 0). Аналогично определяется строгое возрастание функции в точке x 0 . Если f "(x 0) > 0, то функция f (x ) строго возрастает в точке x 0 . Если f (x ) возрастает в каждой точке интервала (a , b ), то она возрастает на этом интервале.

С. Б. Стечкин.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Возрастание и убывание функции" в других словарях:

    Понятия математического анализа. Функция f(x) называется возрастающей на отрезке ВОЗРАСТНАЯ СТРУКТУРА НАСЕЛЕНИЯ соотношение численности разных возрастных групп населения. Зависит от уровней рождаемости и смертности, продолжительности жизни людей … Большой Энциклопедический словарь

    Понятия математического анализа. Функция f(х) называется возрастающей на отрезке , если для любой пары точек x1 и x2, a≤x1 … Энциклопедический словарь

    Понятия матем. анализа. Ф ция f(x) наз. возрастающей на отрезке [а, b], если для любой пары точек х1 и x2, а<или=х1 <х<или=b, выполняется неравенство f(x1)Естествознание. Энциклопедический словарь

    Раздел математики, в котором изучаются производные и дифференциалы функций и их применения к исследованию функций. Оформление Д. и. в самостоятельную математическую дисциплину связано с именами И. Ньютона и Г. Лейбница (вторая половина 17 … Большая советская энциклопедия

    Раздел математики, в к ром изучаются понятия производной и дифференциала и способы их применения к исследованию функций. Развитие Д. и. тесно связано с развитием интегрального исчисления. Неразрывно и их содержание. Вместе они составляют основу… … Математическая энциклопедия

    У этого термина существуют и другие значения, см. функция. Запрос «Отображение» перенаправляется сюда; см. также другие значения … Википедия

    Аристотель и перипатетики - Аристотелевский вопрос Жизнь Аристотеля Аристотель родился в 384/383 гг. до н. э. в Стагире, на границе с Македонией. Его отец по имени Никомах был врачом на службе у македонского царя Аминта, отца Филиппа. Вместе с семьей молодой Аристотель… … Западная философия от истоков до наших дней

    - (КХД), квантовополевая теория сильного вз ствия кварков и глюонов, построенная по образу квант. электродинамики (КЭД) на основе «цветовой» калибровочной симметрии. В отличие от КЭД, фермионы в КХД имеют дополнит. степень свободы квант. число,… … Физическая энциклопедия

    I Сердце Сердце (лат. соr, греч. cardia) полый фиброзно мышечный орган, который, функционируя как насос, обеспечивает движение крови а системе кровообращения. Анатомия Сердце находится в переднем средостении (Средостение) в Перикарде между… … Медицинская энциклопедия

    Жизнь растения, как и всякого другого живого организма, представляет сложную совокупность взаимосвязанных процессов; наиболее существенный из них, как известно, обмен веществ с окружающей средой. Среда является тем источником, откуда… … Биологическая энциклопедия

"Возрастание и убывание функции"

Цели урока:

1. Научить находить промежутки монотонности.

2. Развитие мыслительных способностей, обеспечивающих анализ ситуации и разработку адекватных способов действия (анализ, синтез, сравнение).

3. Формирование интереса к предмету.

Ход урока

Сегодня мы продолжаем изучать приложение производной и рассмотрим вопрос о её применениик исследованию функций. Фронтальная работа

А теперь дадим некоторые определения свойствам функции “Мозговой штурм”

1. Что называют функцией?

2. Как называется переменная Х?

3. Как называется переменная Y?

4. Что называется областью определения функции?

5. Что называется множеством значения функции?

6. Какая функция называется чётной?

7. Какая функция называется нечётной?

8. Что можно сказать о графике чётной функции?

9. Что можно сказать о графике нечётной функции?

10. Какая функция называется возрастающей?

11. Какая функция называется убывающей?

12. Какая функция называется периодической?

Математика изучает математические модели. Одной из главнейших математических моделей является функция. Существуют разные способы описания функций. Какой самый наглядный?

– Графический.

– Как построить график?

– По точкам.

Этот способ подойдет, если заранее известно, как примерно выглядит график. Например, что является графиком квадратичной функции, линейной функции, обратной пропорциональности, функции y = sinx? (Демонстрируются соответствующие формулы, учащиеся называют кривые, являющиеся графиками.)

А что если требуется построить график функции или еще более сложной? Можно найти несколько точек, но как ведет себя функция между этими точками?

Поставить на доске две точки, попросить учеников показать, как может выглядеть график “между ними”:

Выяснить, как ведет себя функция, помогает ее производная.

Откройте тетради, запишите число, классная работа.

Цель урока: узнать, как связан график функции с графиком ее производной, и научиться решать задачи двух видов:

1. По графику производной находить промежутки возрастания и убывания самой функции, а также точки экстремума функции;

2. По схеме знаков производной на промежутках находить интервалы возрастания и убывания самой функции, а также точки экстремума функции.

Подобные задания отсутствуют в наших учебниках, но встречаются в тестах единого государственного экзамена (часть А и В).

Сегодня на уроке мы рассмотрим небольшой элемент работы второго этапа изучения процесса, исследование одного из свойств функции - определение промежутков монотонности

Для решения поставленной задачи, нам необходимо вспомнить некоторые вопросы, рассмотренные ранее.

Итак, запишем тему сегодняшнего урока: Признаки возрастания и убывания функции.

Признаки возрастания и убывания функции:

Если производная данной функции положительна для всех значений х в интервале (а; в), т.е.f"(x) > 0, то функция в этом интервале возрастает.
Если производная данной функции отрицательна для всех значений х в интервале(а; в), т.е.f"(x) < 0, то функция в этом интервале убывает

Порядок нахождения промежутков монотонности:

Найти область определения функции.

1. Найти первую производную функции.

2. решать самой на доске

Найти критические точки, исследовать знак первой производной в промежутках, на которые найденные критические точки делят область определения функции. Найти промежутки монотонности функций:

а) область определения,

б) найдем первую производную:,

в)найдем критические точки: ; , и

3. Исследуем знак производной в полученных промежутках, решение представим в виде таблицы.

указатьна точки экстремума

Рассмотрим несколько примеровисследования функции на возрастание и убывание.

Достаточное условие существования максимума состоит в смене знака производной при переходе через критическую точку с "+" на "-", а для минимума с "-" на "+". Если при переходе через критическую точку смены знака производной не происходит, то в данной точке экстремума нет

1. Найти Д(f).

2. Найти f"(x).

3. Найти стационарные точки, т.е. точки, где f"(x) = 0 или f"(x) не существует.
(Производная равна 0 в нулях числителя, производная не существует в нулях знаменателя)

4. Расположить Д(f) и эти точки на координатной прямой.

5. Определить знаки производной на каждом из интервалов

6. Применить признаки.

7. Записать ответ.

Закрепление нового материала.

Учащиеся работают в парах, решение записывают в тетрадях.

а) у = х³ - 6 х² + 9 х - 9;

б) у = 3 х² - 5х + 4.

Двое работают у доски.

а) у = 2 х³ – 3 х² – 36 х + 40

б) у = х4-2 х³

3.Итог урока

Домашнее задание: тест (дифференцированный)

Производной. Если производная функции положительна для любой точки интервала, то функция возрастает, если отрицательна – убывает.

Чтобы найти промежутки возрастания и убывания функции, нужно найти область ее определения, производную, решить неравенства вида F’(x) > 0 и F’(x)

Решение.



3. Решим неравенства y’ > 0 и y’ 0;
(4 - x)/x³


Решение.
1. Найдем область определения функции. Очевидно, что выражение, стоящее в знаменателе, должно всегда быть отличным от нуля. Поэтому 0 исключается из области определения: функция определена при x ∈ (-∞; 0)∪(0; +∞).

2. Вычислим производную функции:
y’(x) = ((3·x² + 2·x - 4)’ ·x² – (3·x² + 2·x - 4) · (x²)’)/x^4 = ((6·x + 2) ·x² – (3·x² + 2·x - 4) ·2·x)/x^4 = (6·x³ + 2·x² – 6·x³ – 4·x² + 8·x)/x^4 = (8·x – 2·x²)/x^4 = 2· (4 - x)/x³.

3. Решим неравенства y’ > 0 и y’ 0;
(4 - x)/x³

4. Левая часть неравенства имеет один действительный х = 4 и обращается в при x = 0. Поэтому значение x = 4 включается и в промежуток , и в промежуток убывания, а точка 0 не включается .
Итак, искомая функция возрастает на промежутке x ∈ (-∞; 0) ∪ .

4. Левая часть неравенства имеет один действительный х = 4 и обращается в при x = 0. Поэтому значение x = 4 включается и в промежуток , и в промежуток убывания, а точка 0 не включается .
Итак, искомая функция возрастает на промежутке x ∈ (-∞; 0) ∪ .

Источники:

  • как найти на функции промежутки убывания

Функция представляет собой строгую зависимость одного числа от другого, или значения функции (y) от аргумента (х). Каждый процесс (не только в математике), может быть описан своей функцией, которая будет иметь характерные особенности: промежутки убывания и возрастания, точки минимумов и максимумов и так далее.

Вам понадобится

  • - бумага;
  • - ручка.

Инструкция

Пример 2.
Найти промежутки убывания f(x)=sinx +x.
Производная данной функции будет равна: f’(x)=cosx+1.
Решая неравенство cosx+1

Интервалом монотонности функции можно назвать промежуток, в котором функция либо только возрастает, либо только убывает. Ряд определенных действий поможет найти такие диапазоны для функции, что нередко требуется в алгебраических задачах подобного рода.

Инструкция

Первым шагом в решении задачи по определению интервалов, в которых функция монотонно возрастает или убывает, станет вычисление данной функции. Для этого узнайте все значения аргументов (значения по оси абсцисс), для которых можно найти значение функции. Отметьте точки, в которых наблюдаются разрывы. Найдите производную функции. Определив выражение, которое представляет собой производную, приравняйте его к нулю. После этого следует найти корни получившегося . Не про область допустимых .

Точки, в которых функция либо в которых ее производная равна нулю, представляют собой границы интервалов монотонности . Эти диапазоны, а также точки, их разделяющие, следует последовательно внести в таблицу. Найдите знак производной функции в полученных промежутках. Для этого подставьте в выражение, соответствующее производной, любой аргумент из интервала. Если результат положительный, функция в данном диапазоне возрастает, в обратном случае - убывает. Результаты вносятся в таблицу.

В строку, обозначающую производную функции f’(x), записывается соответствующий значениям аргументов : «+» - если производная положительна,«-» - отрицательна или «0» – равна нулю. В следующей строке отметьте монотонность самого исходного выражения. Стрелка вверх соответствует возрастанию, вниз – убыванию. Отметьте функции. Это точки, в которых производная равна нулю. Экстремум может быть либо точкой максимума, либо точкой минимума. Если предыдущий участок функции возрастал, а текущий убывает, это точка максимума. В случае, когда до данной точки функция убывала, а теперь возрастает – это точка минимума. Внесите в таблицу значения функции в точках экстремума.

Источники:

  • что такое определение монотонность

Исследование поведения функции, имеющей сложную зависимость от аргумента, проводится с помощью производной. По характеру изменения производной можно найти критические точки и участки роста или убывания функции.

Понравилась статья? Поделитесь с друзьями!