Уравнение Шредингера. Уравнение Шредингера (общие свойства)

1. Введение

Квантовая теория родилась в 1900 г., когда Макс Планк предложил теоретический вывод о соотношении между температурой тела и испускаемым этим телом излучением - вывод, который долгое время ускользал от других ученых, Как и его предшественники, Планк предположил, что излучение испускают атомные осцилляторы, но при этом считал, что энергия осцилляторов (и, следовательно, испускаемого ими излучения) существует в виде небольших дискретных порций, которые Эйнштейн назвал квантами. Энергия каждого кванта пропорциональна частоте излучения. Хотя выведенная Планком формула вызвала всеобщее восхищение, принятые им допущения оставались непонятными, так как противоречили классической физике.

В 1905 г. Эйнштейн воспользовался квантовой теорией для объяснения некоторых аспектов фотоэлектрического эффекта - испускания электронов поверхностью металла, на которую падает ультрафиолетовое излучение. Попутно Эйнштейн отметил кажущийся парадокс: свет, о котором на протяжении двух столетий было известно, что он распространяется как непрерывные волны, при определенных обстоятельствах может вести себя и как поток частиц.

Примерно через восемь лет Нильс Бор распространил квантовую теорию на атом и объяснил частоты волн, испускаемых атомами, возбужденными в пламени или в электрическом заряде. Эрнест Резерфорд показал, что масса атома почти целиком сосредоточена в центральном ядре, несущем положительный электрический заряд и окруженном на сравнительно больших расстояниях электронами, несущими отрицательный заряд, вследствие чего атом в целом электрически нейтрален. Бор предположил, что электроны могут находиться только на определенных дискретных орбитах, соответствующих различным энергетическим уровням, и что "перескок" электрона с одной орбиты на другую, с меньшей энергией, сопровождается испусканием фотона, энергия которого равна разности энергий двух орбит. Частота, по теории Планка, пропорциональна энергии фотона. Таким образом, модель атома Бора установила связь между различными линиями спектров, характерными для испускающего излучение вещества, и атомной структурой. Несмотря на первоначальный успех, модель атома Бора вскоре потребовала модификаций, чтобы избавиться от расхождений между теорией и экспериментом. Кроме того, квантовая теория на той стадии еще не давала систематической процедуры решения многих квантовых задач.

Новая существенная особенность квантовой теории проявилась в 1924 г., когда де Бройль выдвинул радикальную гипотезу о волновом характере материи: если электромагнитные волны, например свет, иногда ведут себя как частицы (что показал Эйнштейн), то частицы, например электрон при определенных обстоятельствах, могут вести себя как волны. В формулировке де Бройля частота, соответствующая частице, связана с ее энергией, как в случае фотона (частицы света), но предложенное де Бройлем математическое выражение было эквивалентным соотношением между длиной волны, массой частицы и ее скоростью (импульсом). Существование электронных волн было экспериментально доказано в 1927 г. Клинтоном Дэвиссоном и Лестером Джермером в Соединенных Штатах и Джоном-Паджетом Томсоном в Англии.

Под впечатлением от комментариев Эйнштейна по поводу идей де Бройля Шрёдингер предпринял попытку применить волновое описание электронов к построению последовательной квантовой теории, не связанной с неадекватной моделью атома Бора. В известном смысле он намеревался сблизить квантовую теорию с классической физикой, которая накопила немало примеров математического описания волн. Первая попытка, предпринятая Шрёдингер в 1925 г., закончилась неудачей.

Скорости электронов в теории II Шрёдингер были близки к скорости света, что требовало включения в нее специальной теории относительности Эйнштейна и учета предсказываемого ею значительного увеличения массы электрона при очень больших скоростях.

Одной из причин постигшей Шрёдингер неудачи было то, что он не учел наличия специфического свойства электрона, известного ныне под названием спина (вращение электрона вокруг собственной оси наподобие волчка), о котором в то время было мало известно.

Следующую попытку Шрёдингер предпринял в 1926 г. Скорости электронов на этот раз были выбраны им настолько малыми, что необходимость в привлечении теории относительности отпадала сама собой.

Вторая попытка увенчалась выводом волнового уравнения Шрёдингера, дающего математическое описание материи в терминах волновой функции. Шрёдингер назвал свою теорию волновой механикой. Решения волнового уравнения находились в согласии с экспериментальными наблюдениями и оказали глубокое влияние на последующее развитие квантовой теории.

Незадолго до того Вернер Гейзенберг, Макс Борн и Паскуаль Иордан опубликовали другой вариант квантовой теории, получивший название матричной механики, которая описывала квантовые явления с помощью таблиц наблюдаемых величин. Эти таблицы представляют собой определенным образом упорядоченные математические множества, называемые матрицами, над которыми по известным правилам можно производить различные математические операции. Матричная механика также позволяла достичь согласия с наблюдаемыми экспериментальными данными, но в отличие от волновой механики не содержала никаких конкретных ссылок на пространственные координаты или время. Гейзенберг особенно настаивал на отказе от каких-либо простых наглядных представлений или моделей в пользу только таких свойств, которые могли быть определены из эксперимента.

Шрёдингер показал, что волновая механика и матричная механика математически эквивалентны. Известные ныне под общим названием квантовой механики, эти две теории дали долгожданную общую основу описания квантовых явлений. Многие физики отдавали предпочтение волновой механике, поскольку ее математический аппарат был им более знаком, а ее понятия казались более "физическими"; операции же над матрицами - более громоздкими.

Функция Ψ. Нормировка вероятности.

Обнаружение волновых свойств микрочастиц свидетельствовало о том, что классическая механика не может дать правильного описания поведения подобных частиц. Возникла необходимость создать механику микрочастиц, которая учитывала бы также и их волновые свойства. Новая механика, созданная Шрёдингером, Гайзенбергом, Дираком и другими, получила название волновой или квантовой механики.

Плоская волна де Бройля

(1)

является весьма специальным волновым образованием, соответствующим свободному равномерному движению частицы в определенном направлении и с определенным импульсом. Но частица, даже в свободном пространстве и в особенности в силовых полях, может совершать и другие движения, описываемые более сложными волновыми функциями. В этих случаях полное описание состояния частицы в квантовой механике дается не плоской волной де Бройля, а какой-то более сложной комплексной функцией

, зависящей от координат и времени. Она называется волновой функцией. В частном случае свободного движения частицы волновая функция переходит в плоскую волну де Бройля (1). Сама по себе волновая функция вводится как некоторый вспомогательный символ и не относится к числу непосредственно наблюдаемых величин. Но ее знание позволяет статистически предсказывать значения величин, которые получаются экспериментально и потому имеют реальный физический смысл.

Через волновую функцию определяется относительная вероятность обнаружения частицы в различных местах пространства. На этой стадии, когда говорится только об отношениях вероятностей, волновая функция принципиально определена с точностью до произвольного постоянного множителя. Если во всех точках пространства волновую функцию умножить на одно и то же постоянное (вообще говоря, комплексное) число, отличное от нуля, то получится новая волновая функция, описывающая в точности то же состояние. Не имеет смысла говорить, что Ψ равна нулю во всех точках пространства, ибо такая «волновая функция» никогда не позволяет заключить об относительной вероятности обнаружения частицы в различных местах пространства. Но неопределенность в определении Ψ можно значительно сузить, если от относительной вероятности перейти к абсолютной. Распорядимся неопределенным множителем в функции Ψ так, чтобы величина |Ψ|2dV давала абсолютную вероятность обнаружения частицы в элементе объема пространства dV. Тогда |Ψ|2 = Ψ*Ψ (Ψ* - комплексно сопряжённая с Ψ функция) будет иметь смысл плотности вероятности, которую следует ожидать при попытке обнаружения частицы в пространстве. При этом Ψ будет определена все еще с точностью до произвольного постоянного комплексного множителя, модуль которого, однако, равен единице. При таком определении должно быть выполнено условие нормировки:

(2)

где интеграл берется по всему бесконечному пространству. Оно означает, что во всем пространстве частица будет обнаружена с достоверностью. Если интеграл от |Ψ|2 берётся по определённому объёму V1 – мы вычисляем вероятность нахождения частицы в пространстве объёма V1.

Нормировка (2) может оказаться невозможной, если интеграл (2) расходится. Так будет, например, в случае плоской волны де Бройля, когда вероятность обнаружения частицы одинакова во всех точках пространства. Но такие случаи следует рассматривать как идеализации реальной ситуации, в которой частица не уходит на бесконечность, а вынуждена находиться в ограниченной области пространства. Тогда нормировка не вызывает затруднений.

Итак, непосредственный физический смысл связывается не с самой функцией Ψ, а с ее модулем Ψ*Ψ. Почему же в квантовой теории оперируют с волновыми функциями Ψ, а не непосредственно с экспериментально наблюдаемыми величинами Ψ*Ψ? Это необходимо для истолкования волновых свойств вещества - интерференции и дифракции. Здесь дело обстоит совершенно так же, как во всякой волновой теории. Она (во всяком случае в линейном приближении) принимает справедливость принципа суперпозиции самих волновых полей, а не их интенсивностей и, таким образом, достигает включения в теорию явлений интерференции и дифракции волн. Так и в квантовой механике принимается в качестве одного из основных постулатов принцип суперпозиции волновых функций, заключающийся в следующем.

Вид волнового уравнения физической системы определяется ее гамильтонианом, приобретающим в силу этого фундаментальное значение во всем математическом аппарате квантовой механики.

Вид гамильтониана свободной частицы устанавливается уже общими требованиями, связанными с однородностью и изотропией пространства и принципом относительности Галилея. В классической механике эти требования приводят к квадратичной зависимости энергии частицы от ее импульса: где постоянная называется массой частицы (см. I, § 4). В квантовой механике те же требования приводят к такому же соотношению для собственных значений энергии и импульса - одновременно измеримых сохраняющихся (для свободной частицы) величин.

Но для того чтобы соотношение имело место для всех собственных значений энергии и импульса, оно должно быть справедливым и для их операторов:

Подставив сюда (15,2), получим гамильтониан свободно движущейся частицы в виде

где - оператор Лапласа.

Гамильтониан системы невзаимодействующих частиц равен сумме гамильтонианов каждой из них:

где индекс а нумерует частицы; - оператор Лапласа, в котором дифференцирование производится по координатам частицы.

В классической (нерелятивистской) механике взаимодействие частиц описывается аддитивным членом в функции Гамильтона - потенциальной энергией взаимодействия являющейся функцией координат частиц.

Прибавлением такой же функции к гамильтониану системы описывается и взаимодействие частиц в квантовой механике:

первый член можно рассматривать как оператор кинетической энергии, а второй - как оператор потенциальной энергии. В частности, гамильтониан для одной частицы, находящейся во внешнем поле,

где U(х, у, z) - потенциальная энергия частицы во внешнем поле.

Подстановка выражений (17,2)-(17,5) в общее уравнение (8,1) дает волновые уравнения для соответствующих систем. Выпишем здесь волновое уравнение для частицы во внешнем поле

Уравнение же (10,2), определяющее стационарные состояния, принимает вид

Уравнения (17,6), (17,7) были установлены Шредингером в 1926 г. и называются уравнениями Шредингера.

Для свободной частицы уравнение (17,7) имеет вид

Это уравнение имеет конечные во всем пространстве решения при любом положительном значении энергии Е. Для состояний с определенными направлениями движения этими решениями являются собственные функции оператора импульса, причем . Полные (зависящие от времени) волновые функции таких стационарных состояний имеют вид

(17,9)

Каждая такая функция - плоская волна - описывает состояние, в котором частица обладает определенными энергией Е и импульсом . Частота этой волны равна а ее волновой вектор соответствующую длину волны называют де-бройлевской длиной волны частицы.

Энергетический спектр свободно движущейся частицы оказывается, таким образом, непрерывным, простираясь от нуля до Каждое из этих собственных значений (за исключением только значения вырождено, причем вырождение - бесконечной кратности. Действительно, каждому отличному от нуля значению Е соответствует бесконечное множество собственных функций (17,9), отличающихся направлениями вектора при одинаковой его абсолютной величине.

Проследим, каким образом происходит в уравнении Шредингера предельный переход к классической механике, рассматривая для простоты всего одну частицу во внешнем поле. Подставив в уравнение Шредингера (17,6) предельное выражение (6,1) волновой функции получим, произведя дифференцирования,

В этом уравнении имеются чисто вещественные и чисто мнимые члены (напомним, что S и а вещественны); приравнивая те и другие в отдельности нулю, получим два уравнения:

Пренебрегая в первом из этих уравнений членом, содержащим получим

(17,10)

т. е., как и следовало, классическое уравнение Гамильтона - Якоби для действия S частицы. Мы видим, кстати, что при классическая механика справедлива с точностью до величин первого (а не нулевого) порядка по включительно.

Второе из полученных уравнений после умножения на 2а может быть переписано в виде

Это уравнение имеет наглядный физический смысл: есть плотность вероятности нахождения частицы в том или ином месте пространства есть классическая скорость v частицы. Поэтому уравнение (17,11) есть не что иное, как уравнение непрерывности, показывающее, что плотность вероятности «перемещается» по законам классической механики с классической скоростью v в каждой точке.

Задача

Найти закон преобразования волновой функции при преобразовании Галилея.

Решение. Произведем преобразование над волновой функцией свободного движения частицы (плоской волной). Поскольку всякая функция может быть разложена по плоским волнам, то тем самым будет найден закон преобразования и для произвольной волновой функции.

Плоские волны в системах отсчета К и К" (К" движется относительно К со скоростью V):

причем а импульсы и энергии частицы в обеих системах связаны друг с другом формулами

(см. I, § 8), Подставив эти выражения в получим

В таком виде эта формула уже не содержит величин, характеризующих свободное движение частицы, и устанавливает искомый общий закон преобразования волновой функции произвольного состояния частицы. Для системы частиц в показателе экспоненты в (1) должна стоять сумма по частицам.

Согласно фольклору, столь распространенному среди физиков, случилось это так: в 1926 году физик-теоретик по имени выступал на научном семинаре в Цюрихском университете. Он рассказывал о странных новых идеях, витающих в воздухе, о том, что объекты микромира часто ведут себя скорее как волны, нежели как частицы. Тут слова попросил пожилой преподаватель и сказал: «Шрёдингер, вы что, не видите, что всё это чушь? Или мы тут все не знаем, что волны - они на то и волны, чтобы описываться волновыми уравнениями?» Шрёдингер воспринял это как личную обиду и задался целью разработать волновое уравнение для описания частиц в рамках квантовой механики - и с блеском справился с этой задачей.

Тут необходимо сделать пояснение. В нашем обыденном мире энергия переносится двумя способами: материей при движении с места на место (например, едущим локомотивом или ветром) - в такой передаче энергии участвуют частицы - или волнами (например, радиоволнами, которые передаются мощными передатчиками и ловятся антеннами наших телевизоров). То есть в макромире, где живём мы с вами, все носители энергии строго подразделяются на два типа - корпускулярные (состоящие из материальных частиц) или волновые. При этом любая волна описывается особым типом уравнений - волновыми уравнениями. Все без исключения волны - волны океана, сейсмические волны горных пород, радиоволны из далеких галактик - описываются однотипными волновыми уравнениями. Это пояснение нужно для того, чтобы было понятно, что если мы хотим представить явления субатомного мира в терминах волн распределения вероятности (см. Квантовая механика), эти волны также должны описываться соответствующим волновым уравнением.

Шрёдингер применил к понятию волн вероятности классическое дифференциальное уравнение волновой функции и получил знаменитое уравнение, носящее его имя. Подобно тому как обычное уравнение волновой функции описывает распространение, например, ряби по поверхности воды, уравнение Шрёдингера описывает распространение волны вероятности нахождения частицы в заданной точке пространства. Пики этой волны (точки максимальной вероятности) показывают, в каком месте пространства скорее всего окажется частица. Хотя уравнение Шрёдингера относится к области высшей математики, оно настолько важно для понимания современной физики, что я его все-таки здесь приведу - в самой простой форме (так называемое «одномерное стационарное уравнение Шрёдингера»). Вышеупомянутая волновая функция распределения вероятности, обозначаемая греческой буквой («пси»), является решением следующего дифференциального уравнения (ничего страшного, если оно вам не понятно; главное - примите на веру, что это уравнение свидетельствует о том, что вероятность ведёт себя как волна):


где - расстояние, - постоянная Планка , а , и - соответственно масса, полная энергия и потенциальная энергия частицы.

Картина квантовых событий, которую дает нам уравнение Шрёдингера, заключается в том, что электроны и другие элементарные частицы ведут себя подобно волнам на поверхности океана. С течением времени пик волны (соответствующий месту, в котором скорее всего будет находиться электрон) смещается в пространстве в соответствии с описывающим эту волну уравнением. То есть то, что мы традиционно считали частицей, в квантовом мире ведёт себя во многом подобно волне.

Когда Шрёдингер впервые опубликовал свои результаты, в мире теоретической физики разразилась буря в стакане воды. Дело в том, что практически в то же время появилась работа современника Шрёдингера - Вернера Гейзенберга (см. Принцип неопределенности Гейзенберга), в которой автор выдвинул концепцию «матричной механики», где те же задачи квантовой механики решались в другой, более сложной с математической точки зрения матричной форме. Переполох был вызван тем, что ученые попросту испугались, не противоречат ли друг другу два в равной мере убедительных подхода к описанию микромира. Волнения были напрасны. Сам Шрёдингер в том же году доказал полную эквивалентность двух теорий - то есть из волнового уравнения следует матричное, и наоборот; результаты же получаются идентичными. Сегодня используется в основном версия Шрёдингера (иногда его теорию называют «волновой механикой»), так как его уравнение менее громоздкое и его легче преподавать.

Однако представить себе и принять, что нечто вроде электрона ведёт себя как волна, не так-то просто. В повседневной жизни мы сталкиваемся либо с частицей, либо с волной. Мяч - это частица, звук - это волна, и всё тут. В мире квантовой механики всё не так однозначно. На самом деле - и эксперименты это вскоре показали - в квантовом мире сущности отличаются от привычных нам объектов и обладают другими свойствами. Свет, который мы привыкли считать волной, иногда ведёт себя как частица (которая называется фотон), а частицы вроде электрона и протона могут вести себя как волны (см. Принцип дополнительности).

Эту проблему обычно называют двойственной или дуальной корпускулярно-волновой природой квантовых частиц, причем свойственна она, судя по всему, всем объектам субатомного мира (см. Теорема Белла). Мы должны понять, что в микромире наши обыденные интуитивные представления о том, какие формы может принимать материя и как она себя может вести, просто неприменимы. Сам факт, что мы используем волновое уравнение для описания движения того, что привыкли считать частицами, - яркое тому доказательство. Как уже отмечалось во Введении, в этом нет особого противоречия. Ведь у нас нет никаких веских оснований полагать, будто то, что мы наблюдаем в макромире, должно с точностью воспроизводиться на уровне микромира. И тем не менее дуальная природа элементарных частиц остается одним из самых непонятных и тревожащих аспектов квантовой механики для многих людей, и не будет преувеличением сказать, что все беды начались с Эрвина Шрёдингера.

Энциклопедия Джеймса Трефила «Природа науки. 200 законов мироздания».

Джеймс Трефил - профессор физики университета Джорджа Мэйсона (США), один из наиболее известных западных авторов научно-популярных книг.

Комментарии: 0

    Макс Планк - один из основоположников квантовой механики - пришел к идеям квантования энергии, пытаясь теоретически объяснить процесс взаимодействия между недавно открытыми электромагнитными волнами и атомами и, тем самым, разрешить проблему излучения черного тела. Он понял, что для объяснения наблюдаемого спектра излучения атомов нужно принять за данность, что атомы излучают и поглощают энергию порциями (которые ученый назвал квантами) и лишь на отдельных волновых частотах.

    Абсолютно черное тело, полностью поглощающее электромагнитное излучение любой частоты, при нагревании излучает энергию в виде волн, равномерно распределенных по всему спектру частот.

    Слово «квант» происходит от латинского quantum («сколько, как много») и английского quantum («количество, порция, квант»). «Механикой» издавна принято называть науку о движении материи. Соответственно, термин «квантовая механика» означает науку о движении материи порциями (или, выражаясь современным научным языком науку о движении квантующейся материи). Термин «квант» ввел в обиход немецкий физик Макс Планк для описания взаимодействия света с атомами.

    Один из фактов субатомного мира заключается в том, что его объекты - такие как электроны или фотоны - совсем не похожи на привычные объекты макромира. Они ведут себя и не как частицы, и не как волны, а как совершенно особые образования, проявляющие и волновые, и корпускулярные свойства в зависимости от обстоятельств. Одно дело - это заявить, и совсем другое - связать воедино волновые и корпускулярные аспекты поведения квантовых частиц, описав их точным уравнением. Именно это и было сделано в соотношении де Бройля.

    В повседневной жизни имеется два способа переноса энергии в пространстве - посредством частиц или волн. В обыденной жизни между двумя механизмами передачи энергии видимых противоречий не наблюдается. Так, баскетбольный мяч - это частица, а звук - это волна, и всё ясно. Однако в квантовой механике всё обстоит отнюдь не так просто. Даже из простейших опытов с квантовыми объектами очень скоро становится понятно, что в микромире привычные нам принципы и законы макромира не действуют. Свет, который мы привыкли считать волной, порой ведет себя так, будто состоит из потока частиц (фотонов), а элементарные частицы, такие как электрон или даже массивный протон, нередко проявляют свойства волны.

    Больше всего Эйнштейн протестовал против необходимости описывать явления микромира в терминах вероятностей и волновых функций, а не с привычной позиции координат и скоростей частиц. Вот что он имел в виду под «игрой в кости». Он признавал, что описание движения электронов через их скорости и координаты противоречит принципу неопределенности. Но, утверждал Эйнштейн, должны существовать еще какие-то переменные или параметры, с учетом которых квантово-механическая картина микромира вернется на путь целостности и детерминизма. То есть, настаивал он, нам только кажется, будто Бог играет с нами в кости, потому что мы не всё понимаем. Тем самым он первым сформулировал гипотезу скрытой переменной в уравнениях квантовой механики. Она состоит в том, что на самом деле электроны имеют фиксированные координаты и скорость, подобно ньютоновским бильярдным шарам, а принцип неопределенности и вероятностный подход к их определению в рамках квантовой механики - результат неполноты самой теории, из-за чего она и не позволяет их доподлинно определить.

    Юлия Зотова

    Вы узнаете: Какие технологии называются квантовыми и почему. В чем преимущество квантовых технологий перед классическими. Что может и что не может квантовый компьютер. Как физики делают квантовый компьютер. Когда он будет создан.

    Французский физик Пьер Симон Лаплас поставил важный вопрос, о том, всё ли в мире предопределено предыдущим состоянием мира, либо же причина может вызвать несколько следствий. Как и предполагается философской традицией сам Лаплас в своей книге «Изложение системы мира» не задавал никаких вопросов, а сказал уже готовый ответ о том, что да, всё в мире предопределено, однако как часто и случается в философии предложенная Лапласом картина мира не убедила всех и тем самым его ответ породил дискуссию вокруг того вопроса, которая продолжается и по сей день. Несмотря на мнение некоторых философов от том, что квантовая механика разрешила данный вопрос в пользу вероятностного подхода, тем не менее, теория Лапласа о полной предопределенности или как её иначе называют теория лапласовского детерминизма обсуждаема и сегодня.

    Гордей Лесовик

    Некоторое время назад мы с группой соавторов начали выводить второй закон термодинамики с точки зрения квантовой механики. Например, в одной из его формулировок, гласящей, что энтропия замкнутой системы не убывает, типично растет, а иногда остается постоянной, если система энергетически изолирована. Используя известные результаты квантовой теории информации, мы вывели некоторые условия, при которых это утверждение справедливо. Неожиданно выяснилось, что эти условия не совпадают с условием энергетической изолированности систем.

    Профессор физики Джим Аль-Халили исследует наиболее точную и одну из самых запутанных научных теорий - квантовую физику. В начале 20-го века учёные проникли в скрытые глубины материи, в субатомные строительные блоки мира вокруг нас. Они обнаружили явления, которые отличаются от всего увиденного ранее. Мир, где всё может находится во многих местах одновременно, где действительность по-настоящему существует, лишь когда мы наблюдаем за ней. Альберт Эйнштейн противился одной только мысли о том, что в основе сущности природы лежит случайность. Квантовая физика подразумевает, что субатомные частицы могут взаимодействовать быстрее скорости света, а это противоречит его теории относительности.

Введение

Известно, что курс квантовой механики является одним из сложных для восприятия. Это связано не столько с новым и "необычным" математическим аппаратом, сколько прежде всего с трудностью осознания революционных, с позиции классической физики, идей, лежащих в основе квантовой механики и сложностью интерпретации результатов.

В большинстве учебных пособий по квантовой механике изложение материала основано, как правило, на анализе решений стационарного уравнений Шредингера. Однако стационарный подход не позволяет непосредственно сопоставить результаты решения квантовомеханической задачи с аналогичными классическими результатами. К тому же многие процессы, изучаемые в курсе квантовой механики (как, например, прохождение частицы через потенциальный барьер, распад квазистационарного состояния и др.) носят в принципе нестационарный характер и, следовательно, могут быть поняты в полном объеме лишь на основе решений нестационарного уравнения Шредингера. Поскольку число аналитически решаемых задач невелико, использование компьютера в процессе изучения квантовой механики является особенно актуальным.

Уравнение Шредингера и физический смысл его решений

Волновое уравнение Шредингера

Одним из основных уравнений квантовой механики является уравнение Шредингера, определяющее изменение состояний квантовых систем с течением времени. Оно записывается в виде

где Н -- оператор Гамильтона системы, совпадающий с оператором энергии, если он не зависит от времени. Вид оператора определяется свойствами системы. Для нерелятивистского движения частицы массы в потенциальном поле U(r) оператор действителен и представляется суммой операторов кинетической и потенциальной энергии частицы

Если частица движется в электромагнитном поле, то оператор Гамильтона будет комплексным.

Хотя уравнение (1.1) является уравнением первого порядка по времени, вследствие наличия мнимой единицы оно имеет и периодические решения. Поэтому уравнение Шредингера (1.1) часто называют волновым уравнением Шредингера, а его решение называют волновой функцией, зависящей от времени. Уравнение (1.1) при известном виде оператора Н позволяет определить значение волновой функции в любой последующий момент времени, если известно это значение в начальный момент времени. Таким образом, волновое уравнение Шредингера выражает принцип причинности в квантовой механике.

Волновое уравнение Шредингера может быть получено на основании следующих формальных соображений. В классической механике известно, что если энергия задана как функция координат и импульсов

то переход к классическому уравнению Гамильтона--Якоби для функции действия S

можно получить из (1.3) формальным преобразованием

Таким же образом уравнение (1.1) получается из (1.3) при переходе от (1.3) к операторному уравнению путем формального преобразования

если (1.3) не содержит произведений координат и импульсов, либо содержит такие их произведения, которые после перехода к операторам (1.4) коммутируют между собой. Приравнивая после этого преобразования результаты действия на функцию операторов правой и левой частей полученного операторного равенства, приходим к волновому уравнению (1.1). Не следует, однако, принимать эти формальные преобразования как вывод уравнения Шредингера. Уравнение Шредингера является обобщением опытных данных. Оно не выводится в квантовой механике, так же как не выводятся уравнения Максвелла в электродинамике, принцип наименьшего действия (или уравнения Ньютона) в классической механике.

Легко убедиться, что уравнение (1.1) удовлетворяется при волновой функцией

описывающей свободное движение частицы с определенным значением импульса. В общем случае справедливость уравнения (1.1) доказывается согласием с опытом всех выводов, полученных с помощью этого уравнения.

Покажем, что из уравнения (1.1) следует важное равенство

указывающее на сохранение нормировки волновой функции с течением времени. Умножим слева (1.1) на функцию *, a уравнение, комплексно сопряженное к (1.1), на функцию и вычтем из первого полученного уравнения второе; тогда находим

Интегрируя это соотношение по всем значениям переменных и учитывая самосопряженность оператора, получаем (1.5).

Если в соотношение (1.6) подставить явное выражение оператора Гамильтона (1.2) для движения частицы в потенциальном поле, то приходим к дифференциальному уравнению (уравнение непрерывности)

где является плотностью вероятности, а вектор

можно назвать вектором плотности тока вероятности.

Комплексную волновую функцию всегда можно представить в виде

где и -- действительные функции времени и координат. Таким образом, плотность вероятности

а плотность тока вероятности

Из (1.9) следует, что j = 0 для всех функций, у которых функция Ф не зависит от координат. В частности, j= 0 для всех действительных функций.

Решения уравнения Шредингера (1.1) в общем случае изображаются комплексными функциями. Использование комплексных функций весьма удобно, хотя и не необходимо. Вместо одной комплексной функции состояние системы можно описать двумя вещественными функциями и, удовлетворяющими двум связанным уравнениям. Например, если оператор Н -- вещественный, то, подставив в (1.1) функцию и отделив вещественную и мнимую части, получим систему двух уравнений

при этом плотность вероятности и плотность тока вероятности примут вид

Волновые функции в импульсном представлении.

Фурье-образ волновой функции характеризует распределение импульсов в квантовом состоянии. Требуется вывести интегральное уравнение для с Фурье-образом потенциала в качестве ядра.

Решение. Между функциями и имеются два взаимно обратных соотношения.

Если соотношение (2.1) использовать в качестве определения и применить к нему операцию, то с учетом определения 3-мерной -функции,

в результате, как нетрудно убедиться, получится обратное соотношение (2.2). Аналогичные соображения использованы ниже при выводе соотношения (2.8).

тогда для Фурье-образа потенциала будем иметь

Предполагая, что волновая функция удовлетворяет уравнению Шредингера

Подставляя сюда вместо и соответственно выражения (2.1) и (2.3), получаем

В двойном интеграле перейдем от интегрирования по переменной к интегрированию по переменной, а затем эту новую переменную вновь обозначим посредством. Интеграл по обращается в нуль при любом значении лишь в том случае, когда само подынтегральное выражение равно нулю, но тогда

Это и есть искомое интегральное уравнение с Фурье-образом потенциала в качестве ядра. Конечно, интегральное уравнение (2.6) можно получить только при условии, что Фурье-образ потенциала (2.4) существует; для этого, например, потенциал должен убывать на больших расстояниях по меньшей мере как, где.

Необходимо отметить, что из условия нормировки

следует равенство

Это можно показать, подставив в (2.7) выражение (2.1) для функции:

Если здесь сначала выполнить интегрирование по, то мы без труда получим соотношение (2.8).

№1 Стационарное уравнение Шредингера имеет вид . Это уравнение записано для….

Стационарное уравнение Шредингера в общем случае имеет вид

, где потенциальная энергия микрочастицы. Для одномерного случая . Кроме того, внутри потенциального ящика , а вне ящика частица находиться не может, т.к. его стенки бесконечно высоки. Поэтому данное уравнение Шредингера записано для частицы в одномерном ящике с бесконечно высокими стенками.

Линейного гармонического осциллятора

ü Частицы в одномерном потенциальном ящике с бесконечно высокими стенками

Частицы в трехмерном потенциальном ящике с бесконечно высокими стенками

Электрона в атоме водорода

Установите соответствия между квантовомеханическими задачами и уравнениями Шредингера для них.

Общий вид стационарного уравнения Шредингера имеет вид:

Потенциальная энергия частицы,

Оператор Лапласа. Для одновременного случая

Выражение для потенциальной энергии гармонического осциллятора,т.е частицы совершающей одномерное движение под действием квазиупругой силы имеет вид U= .

Значение потенциальной энергии электрона в потенциальном ящике с бесконечно высокими стенками U=0.Электрон в водородоподобном атоме обладаем потенциальной энергией Для атома водородаZ=1 .

Таким образом, для электрона в одномерном потенциальном ящике ур-ие Шредингера имеет вид:

С помощью волновой функции,являющейся решением уравнения Шредингера,можно определить….

Варианты ответа: (Укажите не менее двух вариантов ответа)

Средние значения физических величин,характеризующих частицу

Вероятность того,что частица находится в определенной области пространства



Траекторию частицы

Местонахождение частицы

Величина имеет смысл плотности вероятности(вероятности,отнесенной к единице объема),т.е определяет вероятность пребывания частицы в соответствующем месте пространства.Тогда вероятность W обнаружения частицы в определенной области пространства равна

Уравнение Шредингера (конкретные ситуации)

№1Собственные функции электрона в одномерном потенциальном ящике с бесконечно высокими стенками имеют вид где ширина ящика, квантовое число, имеющее смысл номера энергетического уровня. Если число узлов функции на отрезке и , то равно…

Число узлов , т.е. число точек, в которых волновая функция на отрезке обращается в нуль, связано с номером энергетического уровня соотношением . Тогда , и по условию это отношение равно 1,5. Решая полученное уравнение относительно , получаем, что

Ядерные реакции.

№1 В ядерной реакции буквой обозначена частица …

Из законов сохранения массового числа и зарядового числа следует, что заряд частицы равен нулю, а массовое число равно 1. Следовательно, буквой обозначен нейтрон.

ü Нейтрон

Позитрон

Электрон

На графике в полулогарифмическом масштабе показана зависимость изменения числа радиоактивных ядер изотопа от времени.Постоянная радиоактивного распада в равна …(ответ округлите до целых)

Число радиоактивных ядер изменяется со временем по закону -начальное число ядер, -постоянная радиоактивного распада.Прологарифмировав это выражение,получим

ln .Следовательно, =0,07

Законы сохранения в ядерных реакциях .

Реакция не может идти из-за нарушения закона сохранения …

Во всех фундаментальных взаимодействиях выполняются законы сохранения: энергии, импульса, момента импульса (спина) и всех зарядов (электрического , барионного и лептонного ). Эти законы сохранения не только ограничивают последствия различных взаимодействий, но определяют также все возможности этих последствий. Для выбора правильного ответа надо проверить, каким законом сохранения запрещена и какими разрешена приведенная реакция взаимопревращения элементарных частиц. Согласно закону сохранения лептонного заряда в замкнутой системе при любых процессах, разность между числом лептонов и антилептонов сохраняется. Условились считать для лептонов: . лептонный заряд а для антилептонов: . лептонный заряд . Для всех остальных элементарных частиц лептонные заряды принимаются равными нулю. Реакция не может идти из-за нарушения закона сохранения лептонного заряда , т.к.

ü Лептонного заряда

Барионного заряда

Спинового момента импульса

Электрического заряда

Реакция не может идти из-за нарушения закона сохранения…

Во всех фундаментальных взаимодействиях выполняются законы сохранения: энергии,импульса,момента импульса(спина)и всех зарядов(электрического Q,барионного B и лептонного L).Эти законы сохранения не только ограничивают последствия различных взаимодействий,но определяют также все возможности этих последствий. Согласно закону сохранения барионного заряда B,для всех процессов с участием барионов и антибарионов суммарный барионный зарад сохраняется. Барионам (нуклонам n,p и гиперонам)приписывается барионный заряд

B=-1,а всем остальным частицам барионный заряд-B=0.Реакция не может идти из-за нарушения закона барионного заряда B,т.к (+1)+(+1)

Варианты ответа: ,лептонного заряда,спинового момента импульса,электрического заряда. Q=0, антипротона (

Понравилась статья? Поделитесь с друзьями!