Начальная фаза. Сдвиг фаз

Измерение сдвига фаз в цепях переменного тока

Приборы и принадлежности: лабораторная панель «Переменный ток. Закон Ома» с резистором, конденсатором и катушкой, источник переменного тока – генератор Г3-118, универсальный вольтметр В7-40.

Введение. Рассмотрим электрическую цепь (рис.1), содержащую (в общем случае) активное сопротивление R , индуктивность L и емкость C , в которую включен источник переменного тока с напряжением на выходе

где u – мгновенное напряжение – напряжение в момент времени t ,

U m – амплитуда напряжения,

 – циклическая частота колебаний напряжения.

в L . Такая цепь называется контуром с сосредоточенными параметрами. Согласно второму правилу Кирхгофа для данной цепи можно написать Рис.1

следующее уравнение:

где i – мгновенное значение тока в цепи, изменяющееся как и напряжение с частотой ,

u C – напряжение на конденсаторе.

Рассмотрим ряд цепей с различными нагрузками и соответствующие им уравнения.

1. Пусть к источнику присоединено только активное сопротивление R (рис.2,а ). При этом L =0, C  . Сопротивление называется активным потому, что в нем происходит превращение энергии электрического тока во внутреннюю энергию проводника или в механическую работу.

Уравнение (2) для данного частного случая принимает вид:

из которого следует, что ток

где I Rm – амплитуда тока в цепи с активной нагрузкой, I Rm = U m / R .

Т

аким образом, колебания силы тока в цепи, содержащей только активное

сопротивление, совпадают по фазе с колебаниями напряжения (рис. 2,б ). Векторная диаграмма для данной ситуации представлена на рис. 2,в.

2

. Пусть нагрузкой источника переменного тока является катушка индуктивности L . Активным и емкостным сопротивлением данной цепи пренебрежом (рис.3,а ).

Уравнение Кирхгофа (2) для такого контура имеет вид:

Величина ЭДС самоиндукции численно равна падению напряжения на индуктивности L , которое в дальнейшем обозначим U L .

Из уравнения (4) можно написать, что

. (5)

Проинтегрируем уравнение (5) и получим для тока следующее выражение:

Так как в цепи нет постоянной составляющей тока, то const =0 .

Таким образом, ток в цепи только с индуктивностью имеет вид

, (6)

где I Lm – амплитуда тока. . (7)

Сравнивая выражение (7) с приведенным ранее (3), можно сделать вывод, что величина L в случае индуктивной нагрузки играет роль сопротивления. Она носит название индуктивного сопротивления и обозначается X L .

Из сравнения формул (6) и (1) видно, что ток в цепи, содержащей чисто индуктивную нагрузку, отстает от напряжения по фазе на  радиан (рис. 3,б ). На векторной диаграмме вектор напряжения U Lm повернут на угол  от вектора тока в положительном направлении – против часовой стрелки, вектор тока I m отстает от него.

3. Пусть в цепь источника переменного тока включен только конденсатор емкостью С без диэлектрических потерь энергии (рис. 4,а ).



Рис.4

Напряжение на конденсаторе С равно выходному напряжению источника

(8)

Так как и , то

(9)

где (10)

Величина (11)

называется емкостным сопротивлением цепи. (Индекс С при обозначении тока указывает лишь на то , что он протекает в цепи с чисто емкостной нагрузкой).

Для постоянного тока  , поэтому конденсатор представляет бесконечно большое сопротивление. С ростом частоты переменного тока емкостное сопротивление уменьшается.

Из сравнения формул (9) и (1) видно, протекающий через конденсатор ток опережает по фазе напряжение на емкости на  . (рис. 4,б ). На векторной диаграмме (рис. 4,в ) вектор тока I Cm повернут на угол  от U Cm в сторону положительного направлению вращения.

Сопротивления X C и X L называют реактивными . На них не происходит превращения энергии электрического тока во внутреннюю энергию нагрузки несмотря на наличие сопротивления (в этом смысл их названия).

4.Рассмотрим электрическую цепь с сосредоточенными параметрами R , L , C (рис. 5,а ). Под действием переменного напряжения U ВХ в цепи установится переменный ток I , величина которого одинакова во всех элементах – резисторе, катушке и конденсаторе, так как они соединены последовательно (ток через каждый из вольтметров считаем пренебрежимо малым по сравнению с I ). Протекающий ток вызывает на них падение напряжения: – на активном сопротивлении, – на индуктивности и – на емкости. Величинами U R , U L , U C , U ВХ обозначены напряжения, которые показывают соответствующие вольтметры. Сумма напряжений должна быть равна приложенному к данной цепи напряжению U ВХ . Но эта сумма не может быть ни арифметической, ни алгебраической, а только векторной, так как между напряжениями существует фазовые сдвиги.

Для расчета цепей переменного тока применяются два метода: 1)так называемый символический – это аналитический метод с использованием комплексных переменных и 2)графический – метод векторных диаграмм. Воспользуемся вторым .

Построение векторной диаграммы для последовательного контура производится в следующем порядке.

1.В произвольном направлении, например горизонтально, прочерчивают ось токов и на ней в определенном масштабе откладывают вектор тока I m . Вместо амплитудного значения можно откладывать эффективное, , т.е. показание прибора. Это эквивалентно уменьшению масштаба диаграммы в раз.

2.В том же направлении откладывают вектор U R , – падение напряжения на активном сопротивлении, которое синфазно току. Масштаб для напряжения должен быть выбран, разумеется, свой.

3.Под углом  к вектору тока строят вектор U C , так как напряжение на конденсаторе отстает от тока по фазе на эту величину.

4.Под углом  к оси токов проводят вектор U L , так как напряжение на индуктивности опережает ток по фазе.



Рис.5

5.Находят векторную сумму всех напряжений, получается вектор U ВХ . Видно, что ток в цепи I не совпадает по фазе с приложенным к ней напряжением U ВХ (рис. 5,б ). – разность фаз тока и напряжения (по-другому, сдвиг фаз между током и напряжением).

6.Измерение длины суммарного вектора с учетом масштаба напряжения дает входное напряжение в вольтах, а угол сдвига фаз измеряется на диаграмме транспортиром или вычисляется тригонометрически. В этом состоит графический способ расчета цепи.

Итак, если напряжение на входе цепи изменяется по закону , то в цепи течет ток, причем разность фаз может быть как положительной, так и отрицательной.

Аналитически величины I m и определяются следующим образом.

Из векторной диаграммы следует, что

(12)

(13)

Вместо амплитудных значений в формуле (13) можно писать эффективные (или действующие) значения тока и напряжения, которые в раз меньше амплитудных

Уравнение (14) выражает закон Ома для цепей переменного тока. Роль сопротивления здесь играет выражение, стоящее в знаменателе,

(15)

которое называется полным сопротивлением .

Таким образом, переменный ток в участке цепи прямо пропорционален переменному напряжению на этом участке и обратно пропорционален его полному сопротивлению. Так можно сформулировать закон Ома.

Разность между фазой тока и фазой напряжения (сдвиг фаз) зависит от активного и реактивного сопротивлений. Из рис. 5,б следует, что

Целью работы является определение сдвига фаз между током и напряжением с применением векторных диаграмм в наиболее часто встречающихся цепях переменного тока.

Упражнение 1
Цепь с емкостной нагрузкой (RC-цепь)

Чтобы построить векторную диаграмму, необходимо знать падение напряжения на всех элементах рассматриваемой цепи. К этому сводятся предстоящие действия.

И

змерения.
1.Соберите электрическую цепь (RC -цепь) по схеме (рис.6), где ЛП – лабораторная панель. Предложите преподавателю или лаборанту проверить ее. В цепи отсутствует амперметр. Поэтому силу тока в цепи предлагается опре-делять из закона Ома по падению напряжения на ре-зисторе с известным сопротивлением R p .

2.Включите вольт-

Рис.6 метр. Нажмите кла-вишу “U ~” – измерения переменного напряжения и клавишу “АВП ” – автоматический выбор предела измерения.

3.Установите с помощью декадных переключателей и десятичного множителя частоту генератора Г3-118 1,10 кГц .

Строгое предупреждение! Нельзя выставлять нули на всех декадных переключателях частоты генератора! Согласно инструкции прибор генерирует колебания от 10 Гц до 200 кГц. Не следует заставлять его делать невозможное. Нарушение инструкции сопровождается перегоранием транзисторов выходного каскада генератора.

Включите генератор в сеть, установите входное напряжение U ВХ =3…4 В (оно же – напряжение на выходе генератора.

4.Присоединяя поочередно вольтметр параллельно конденсатору С и резистору R p , запишите его показания U C и U R точностью три значащие цифры в соответствующие колонки табл.1.

Таблица 1

R P =

U ВХ ,

U R ,

U C ,

Z 1 ,

гр ,

град.

ан ,

град.

5.Проведите аналогичные измерения при частотах генератора 2,10; 3,10; 4,10; 5,10 кГц, каждый раз проверяя и поддерживая прежнее входное напряжение.

6.Выключите генератор. С помощью того же универсального вольтметра измерьте сопротивление резистора R P и запишите его в табл.1.

Обработка результатов измерений. 1.Для всех частот постройте векторные диаграммы напряжений на миллиметровой бумаге. Делать это надо так, как сказано выше (см. с.92). Проведите ось токов, отложите на ней вектор тока I (в масштабе). На этой же оси отложите вектор U R (в своем масштабе). Из конца вектора U R под углом /2 постройте вектор U C (Падением напряжения на активном сопротивлении конденсатора в данном случае можно пренебречь. О причинах этого кратко написано в работе №325).

2.Постройте суммарный вектор двух вышеуказанных. Проверьте , что векторная сумма падений напряжения на конденсаторе и резисторе, полученная Вами, равна входному напряжению.

3.На полученных диаграммах измерьте транспортиром угол между вектором входного напряжения и вектором тока I и впишите его в колонку гр табл.1. Это искомая разность фаз, найденная графически .

Сдвиг по фазе тока и напряжения можно найти аналитически из формулы (16), [см. Введение]. Обозначим его ан .

.

4.Сравните между собой значения углов, полученные графическим и аналитическим способом. Их совпадение или близкие величины подтверждают соответствие теоретических положений, содержащихся во Введении, экспериментальным результатам. Если углы отличаются более, чем на 5% друг от друга, то в измерениях или вычислениях, скорее всего, содержится ошибка.

5.Вычислите ток в цепи I и сопротивление конденсатора Z 1 = X C на всех частотах.

6.Из формулы (11) найдите емкость С при всех частотах .

Вычислите среднее значение емкости по всем измерениям, а также полуширину доверительного интервала С .

Упражнение 2

Цепь с индуктивной нагрузкой (RL-цепь)

В качестве индуктивной нагрузки применяется катушка, содержащая несколько тысяч витков медного провода и не содержащая железного сердечника. При наличии ферромагнитного сердечника индуктивность катушки зависит от протекающего по ней тока. Нам желательно иметь ее постоянной несмотря на изменение тока в ходе опыта.

Измерения. 1.Не собирая цепь , включите вольтметр в сеть, нажмите клавишу “R ” и клавишу “A ВП ”, измерьте сопро-тивление постоянному току резистора R P и катушки R L , запишите их в табл.2.

2.Соберите электри-ческую цепь по схеме (рис.7).

3.Включите вольтметр параллельно выходу генера-тора. Нажмите клавиши “U ~” и “АВП ”.

Рис.7 4.Установите частоту

генератора 1,10 кГц , включите генератор в сеть. Установите по вольтметру напряжение на выходе (оно же входное напряжение для нагрузки) U BX = 3…4 В .

5.Присоединяя вольтметр поочередно к клеммам катушки L и резистора R Р , измерьте U L и U R c точностью до трех значащих цифр.

6.Повторите подобные измерения на частотах 2,10; 3,10; 4,10; 5,10 кГц, поддерживая одно и то же напряжение U BX .

Таблица 2

R P =

R L =

U BX ,

U L ,

U R ,

Z 2 ,

L ,

IR L ,

I L,

гр ,

град.

ан ,

град.

1.Постройте на миллиметровой бумаге векторные диаграммы по данным табл.2. Но в отличие от идеальной индуктивности, рассмотренной во Введении, реальная катушка обладает некоторым активным сопротивлением R L , которое Вы измерили в п.1. Поэтому ее полное сопротивление

(17)

и U L есть падение напряжения на нем. При этом вектор U L не перпен-дикулярен вектору тока I . Чтобы построить U L , его надо представить как сумму двух слагаемых

Первое слагаемое совпадает по фазе с током и поэтому сонаправ-лено с вектором тока, второе – перпендикулярно вектору тока и опережает его по фазе.

Чтобы построить векторную диаграмму по полученным результатам, отложите в выбранном масштабе вдоль оси токов вектор U R , к нему прибавьте вектор такого же направления IR L , затем из его конца под углом +/2 постройте вектор I L . Если соединить начало первого вектора с концом последнего, получится суммарный вектор, который должен быть равен U BX .

Действительно

.

2.Измерьте транспортиром угол между вектором тока и вектором входного напряжения. Назовем его углом сдвига фаз, определенным графическим способом – гр .

3.Определите ток в цепи из закона Ома

4.Найдите полное сопротивление катушки по формуле

5.Из формулы (17) найдите L при каждой частоте. Вычислите среднее значение индуктивности и полуширину доверительного интервала L .

6.Из формулы (16) найдите угол сдвига фаз ан между током в цепи и напряжением. Назовем его углом, определенным аналитически .

Сравните значения углов гр и ан на всех частотах. Есть ли между ними разница и чему она равна?

Упражнение 3

Цепь с комбинированной нагрузкой (RCL -цепь)

Рассмотрим электрическую цепь переменного тока, содержащую все элементы: активное сопротивление R , емкость C и индуктивность L .

Измерения. 1.Соберите цепь по схеме (рис.8).

2.Измерьте при входном напряжении 3-4 В и частотах 1,10; 2,10; 3,10; 4,10; 5,10 кГц падение напряжения на резисторе, катушке и конденсаторе и запишите их в соответствующие колонки табл.3.



Обработка результатов измерений. 1.Определите ток в цепи из закона Ома, если известно падение напряжения U R на известном сопротивлении R P .

I=U R /R P .

2.Рассчитайте все остальные величины, входящие в табл.3.

Таблица 3

R P =

R L =

U BX ,

U R ,

U L ,

U C ,

I L,

IR L ,

гр ,

град.

ан ,

град.

3.Постройте векторные диаграммы для данной цепи. Эту работу рационально выполнять в следующем порядке.

а )По оси токов отложитевектор U R .

б )Из конца вектора U R в том же направлении проведите вектор IR L .

в )Из конца вектора IR L под углом +/2 постройте вектор I L .

г )Из конца вектора I L проведите ему противоположный вектор U C .

д )Проведите вектор из начала первого к концу последнего вектора. Это есть суммарный вектор всех перечисленных выше векторов. Ясно, что по модулю он должен быть равен входному напряжению. Направление вектора входного напряжения по отношению к вектору тока в данной цепи дает угол сдвига фаз между ними.

4.Измерьте транспортиром угол, образованный вектором U BX и ось токов. Это угол сдвига фаз между током и напряжением, который определен графическим методом. Обозначьте его, как и прежде, гр .

Активным сопротивлением конденсатора и проводов можно пренебречь ввиду их малости по сравнению с емкостным сопротивлением и активным сопротивлением резистора и катушки.

Разумеется, вместо вычисления падений напряжения на индуктивном I L , емкостном I / C и активном сопротивлении I (R P + R L ) можно было бы ограничиться определением указанных сопротивлений . Но этого не сделано. Тем самым хотим обратить внимание студентов на совпадение показания вольтметра U C с I / C , на отличие U L от I L и подчеркнуть причину этого.

5.Рассчитайте угол сдвига фаз из формулы (16). Назовем его аналитическим – ан .

.

Сравните его с углом, который был получен графическим способом.

6.Постройте график зависимости угла сдвига фаз гр от частоты переменного тока по данным таблиц 1, 2 и 3.

7. Вывод (по всей работе в целом) запишите в своей рабочей тетради.

Контрольные вопросы

1.Что такое активное сопротивление в цепи переменного тока? Какие элементы цепи обладают активным сопротивлением? Будут ли они его иметь в цепи постоянного тока?

2.Что такое индуктивное сопротивление? От чего оно зависит? По какой формуле оно вычисляется в работе? От чего зависит индуктивность?

3.Докажите, что напряжение на индуктивности опережает ток по фазе. Изобразите векторную диаграмму для данного случая.

4.Докажите, что колебания напряжения на емкости отстают по фазе от тока. Нарисуйте векторную диаграмму в этом случае.

5.Что такое емкостное сопротивление? От чего оно зависит? Как находится в данной работе? Есть ли среди Ваших результатов такие, на основании которых можно утверждать, что активное сопротивление конденсатора мало по сравнению с емкостным?

6.Что такое метод векторных диаграмм и как им пользоваться в конкретной ситуации?

1. Калашников С.Г. Электричество. М.: Наука, 1977. §220.

2. Лабораторные занятия по физике /Под ред. Л.Л.Гольдина. М.: Наука, 1983. С.312.

3. Савельев И.В. Курс общей физики. М.: Наука, 1973. Т.2. §92-95.

Цепи переменного тока с последовательным соединением активного сопротивления, индуктивности и емкостиЛабораторная работа >> Физика

Работа «Исследование цепи переменного тока с последовательным соединением... измерения Класс точности Предел измерений ... сдвига фаз между напряжением на катушке и током в ней; φ – угол сдвига фаз между напряжением источника и током цепи ; ƒ – частота тока ...

  • Мощность и коэффициент мощности в цепях переменного тока

    Лабораторная работа >> Физика

    ... цепи существует, как правило, разность фаз (или, как еще говорят, сдвиг по фазе ), которая... данной лабораторной работы является измерение мощности и cos в цепях переменного тока с различной нагрузкой. Описание установки...

  • Анализ электрической цепи синусоидального тока

    Контрольная работа >> Физика

    ... цепей переменного тока . Угол сдвига фаз между током и напряжением участка цепи принято обозначать буквой и определять вычитанием начальные фазы тока ... приборы для измерения тока , напряжения, мощности. Для анализа цепей переменного тока как правило...

  • Проделаем следующий опыт. Возьмем описанный в § 153 осциллограф с двумя петлями и включим его в цепь так (рис. 305,а), чтобы петля 1 была включена в цепь последовательно с конденсатором, а петля 2 параллельно этому конденсатору. Очевидно, что кривая, получаемая от петли 1, изображает форму тока, проходящего через конденсатор, а от петли 2 дает форму напряжения между обкладками конденсатора (точками и ), потому что в этой петле осциллографа ток в каждый момент времени пропорционален напряжению. Опыт показывает, что в этом случае кривые тока и напряжения смещены по фазе, причем ток опережает по фазе напряжение на четверть периода (на ). Если бы мы заменили конденсатор катушкой с большой индуктивностью (рис. 305,б), то оказалось бы, что ток отстает по фазе от напряжения на четверть периода (на ). Наконец, таким же образом можно было бы показать, что в случае активного сопротивления напряжение и ток совпадают по фазе (рис. 305,в).

    Рис. 305. Опыт по обнаружению сдвига фаз между током и напряжением: слева – схема опыта, справа – результаты

    В общем случае, когда участок цепи содержит не только активное, но и реактивное (емкостное, индуктивное или и то и другое) сопротивление, напряжение между концами этого участка сдвинуто по фазе относительно тока, причем сдвиг фаз лежит в пределах от до и определяется соотношением между активным и реактивным сопротивлениями данного участка цепи.

    В чем заключается физическая причина наблюдаемого сдвига фаз между током и напряжением?

    Если в цепь не входят конденсаторы и катушки, т. е. емкостным и индуктивным сопротивлениями цепи можно пренебречь по сравнению с активным, то ток следует за напряжением, проходя одновременно с ним через максимумы и нулевые значения, как это показано на рис. 305,в.

    Если цепь имеет заметную индуктивность , то при прохождении по ней переменного тока в цепи возникает э. д. с. самоиндукции. Эта э. д. с. по правилу Ленца направлена так, что она стремится препятствовать тем изменениям магнитного поля (а следовательно, и изменениям тока, создающего это поле), которые вызывают э. д. с. индукции. При нарастании тока э. д. с. самоиндукции препятствует этому нарастанию, и потому ток позже достигает максимума, чем в отсутствие самоиндукции. При убывании тока э. д. с. самоиндукции стремится поддерживать ток и нулевые значения тока будут достигнуты в более поздний момент, чем в отсутствие самоиндукции. Таким образом, при наличии индуктивности ток отстает по фазе от тока в отсутствие индуктивности, а следовательно, отстает по фазе от своего напряжения.

    Если активным сопротивлением цепи можно пренебречь по сравнению с ее индуктивным сопротивлением , то отставание тока от напряжения по времени равно (сдвиг фаз равен ), т. е. максимум совпадает с , как это показано на рис. 305,б. Действительно, в этом случае напряжение на активном сопротивлении , ибо , и, следовательно, все внешнее напряжение уравновешивается э. д. с. индукции, которая противоположна ему по направлению: . Таким образом, максимум совпадает с максимумом , т. е. наступает в тот момент, когда изменяется быстрее всего, а это бывает, когда . Наоборот, в момент, когда проходит через максимальное значение, изменение тока наименьшее , т. е. в этот момент .

    Если активное сопротивление цепи не настолько мало, чтобы им можно было пренебречь, то часть внешнего напряжения падает на сопротивлении , а остальная часть уравновешивается э. д. с. самоиндукции: . В этом случае максимум отстоит от максимума по времени меньше, чем на (сдвиг фаз меньше ), как это изображено на рис. 306. Расчет показывает, что в этом случае отставание по фазе может быть вычислено по формуле

    . (162.1)

    При имеем и , как это объяснено выше.

    Рис. 306. Сдвиг фаз между током и напряжением в цепи, содержащей активное и индуктивное сопротивления

    Если цепь состоит из конденсатора емкости , а активным сопротивлением можно пренебречь, то обкладки конденсатора, присоединенные к источнику тока с напряжением , заряжаются и между ними возникает напряжение . Напряжение на конденсаторе следует за напряжением источника тока практически мгновенно, т. е. достигает максимума одновременно с и обращается в нуль, когда .

    Зависимость между током и напряжением в этом случае показана на рис. 307,а. На рис. 307,б условно изображен процесс перезарядки конденсатора, связанный с появлением переменного тока в цепи.

    Рис. 307. а) Сдвиг фаз между напряжением и током в цепи с емкостным сопротивлением в отсутствие активного сопротивления. б) Процесс перезарядки конденсатора в цепи переменного тока

    Когда конденсатор заряжен до максимума (т. е. , а следовательно, и имеют максимальное значение), ток и вся энергия цепи есть электрическая энергия заряженного конденсатора (точка на рис. 307,а). При уменьшении напряжения конденсатор начинает разряжаться и в цепи появляется ток; он направлен от обкладки 1 к обкладке 2, т. е. навстречу напряжению . Поэтому на рис. 307,а он изображен как отрицательный (точки лежат ниже оси времени). К моменту времени конденсатор полностью разряжен ( и ), а ток достигает максимального значения (точка ); электрическая энергия равна нулю, и вся энергия сводится к энергии магнитного поля, создаваемого током. Далее, напряжение меняет знак, и ток начинает ослабевать, сохраняя прежнее направление. Когда (и ) достигнет максимума, вся энергия вновь станет электрической, и ток (точка ). В дальнейшем (и ) начинает убывать, конденсатор разряжается, ток нарастает, имея теперь направление от обкладки 2 к обкладке 1, т. е. положительное; ток доходит до максимума в момент, когда (точка ) и т. д. Из рис. 307,а видно, что ток раньше, чем напряжение, достигает максимума и проходит через нуль, т. е. ток опережает напряжение по фазе., как это объяснено выше.

    Рис. 308. Сдвиг фаз между током и напряжением в цепи, содержащей активное и емкостное сопротивления

    Но т.к. витки сдвинуты в пространстве, то наводимая в них ЭДС будет достигать амплитудных и нулевых значений не одновременно.

    В начальный момент времени ЭДС витка будет:

    В этих выражениях углы и называются фазными , или фазой . Углы и называются начальной фазой . Фазный угол определяет значение ЭДС в любой момент времени, а начальная фаза определяет значение ЭДС в начальный момент времени.

    Разность начальных фаз двух синусоидальных величин одинаковой частоты и амплитуды называется углом сдвига фаз

    Разделив угол сдвига фаз на угловую частоту, получим время, прошедшее с начала периода:

    Графическое изображение синусоидальных величин

    U = (U 2 a + (U L - U c) 2)

    Таким образом, из-за наличия угла сдвига фаз напряжение U всегда меньше алгебраической суммы U a + U L + U C . Разность U L - U C = U p называется реактивной составляющей напряжения .

    Рассмотрим, как изменяются ток и напряжение в последовательной цепи переменного тока.

    Полное сопротивление и угол сдвига фаз. Если подставить в формулу (71) значения U a = IR; U L = lL и U C =I/(C), то будем иметь: U = ((IR) 2 + 2), откуда получаем формулу закона Ома для последовательной цепи переменного тока:

    I = U / ((R 2 + 2)) = U / Z (72)

    где Z = (R 2 + 2) = (R 2 + (X L - X c) 2)

    Величину Z называют полным сопротивлением цепи , оно измеряется в омах. Разность L — l/(C) называют реактивным сопротивлением цепи и обозначают буквой X. Следовательно, полное сопротивление цепи

    Z = (R 2 + X 2)

    Соотношение между активным, реактивным и полным сопротивлениями цепи переменного тока можно также получить по теореме Пифагора из треугольника сопротивлений (рис. 193). Треугольник сопротивлений А’В’С’ можно получить из треугольника напряжений ABC (см. рис. 192,б), если разделить все его стороны на ток I.

    Угол сдвига фаз определяется соотношением между отдельными сопротивлениями, включенными в данную цепь. Из треугольника А’В’С (см. рис. 193) имеем:

    sin ? = X / Z; cos? = R / Z; tg? = X / R

    Например, если активное сопротивление R значительно больше реактивного сопротивления X, угол сравнительно небольшой. Если в цепи имеется большое индуктивное или большое емкостное сопротивление, то угол сдвига фаз возрастает и приближается к 90°. При этом, если индуктивное сопротивление больше емкостного, напряжение и опережает ток i на угол; если же емкостное сопротивление больше индуктивного, то напряжение и отстает от тока i на угол.

    Идеальная катушка индуктивности, реальная катушка и конденсатор в цепи переменного тока.

    Реальная катушка в отличии от идеальной имеет не только индуктивность, но и активное сопротивление, поэтому при протекании переменного тока в ней сопровождается не только изменением энергии в магнитном поле, но и преобразованием электрической энергии в другой вид. В частности, в проводе катушки электрическая энергия преобразуется в тепло в соответствии с законом Ленца — Джоуля .

    Ранее было выяснено, что в цепи переменного тока процесс преобразования электрической энергии в другой вид характеризуется активной мощностью цепи Р , а изменение энергии в магнитном поле — реактивной мощностью Q .

    В реальной катушке имеют место оба процесса, т. е. ее активная и реактивная мощности отличны от нуля. Поэтому одна реальная катушка в схеме замещения должна быть представлена активным и реактивным элементами.

    Начальные фазы электромагнитных синусоидальных колебаний первичного и вторичного напряжения, с частотой одинаковой величины, могут существенно различаться на некоторый угол сдвига фаз (угол φ). Переменные величины могут неоднократно в течение определенного периода некоторого времени изменяются с определенной частотой. Если электрические процессы имеют неизменный характер, а сдвиг фаз равен нулю, это свидетельствует о синхронизме источников величин переменного напряжения, например, трансформаторов. Сдвиг фазы служит определяющим фактором коэффициента мощности в электрических сетях переменного тока.

    Угол сдвига фаз находится при необходимости, тогда, если один из сигналов является опорным, а второй сигнал с фазой в самом начале совпадает с углом сдвига фаз.

    Измерение угла сдвига фаз производится прибором, в котором присутствует нормированная погрешность.

    Фазометр может производить измерение угла сдвига в границах от 0 о до 360 о в некоторых случаях от -180 о С до +180 о С, а диапазон измеряемых частот сигналов может колебаться от 20Гц до 20 ГГц. Измерение гарантируется в том случае если напряжение входного сигнала равно от 1 мВ до 100 В, если же напряжение входного сигнала превышает эти границы точность измерения не гарантируется.

    Методы измерения угла сдвига фаз

    Существует несколько способов измерения угла сдвига фаз, это:

    1. Использование двухлучевого или двухканального осциллографа.
    2. Компенсационный метод основан на сравнении измеряемого фазового сдвига, с фазовым сдвигом, который предоставляется образцовым фазовращателем.
    3. Суммарно-разностный метод, он заключается в использовании гармонических или сформированных прямоугольных сигналов.
    4. Преобразование сдвига фаз во временном интервале.

    Как измеряется угол сдвига фаз осциллографом

    Осциллографический способ можно отнести к самому простейшему с погрешностью в районе 5 о. Определение сдвига осуществляется при помощи осциллограмм. Существует четыре осциллографических метода:

    1. Применение линейной развертки.
    2. Метод эллипса.
    3. Метод круговой развертки.
    4. Использование яркостных меток.

    Определение угла сдвига фаз зависит от характера нагрузки. При определении фазного сдвига в первичной и вторичной цепях трансформатора, углы могут считаться равными и практически не отличаются друг от друга.

    Угол сдвига фаз напряжений, измеряемый по эталонному источнику частоты и при использовании измерительного органа лает возможность обеспечить точность всех последующих измерений. Фазные напряжения и угол сдвига фаз зависят от нагрузки, так симметричная нагрузка обуславливает равенство фазного напряжения, токов нагрузки и угол фазного сдвига, также будет равна нагрузка по потребляемой мощности на всех фазах электроустановки.

    Угол сдвига фаз между током и напряжением в несимметричных трехфазных цепях не равны друг другу. Для того чтобы вычислить угол сдвига фаз (угол φ) в цепь включают последовательно присоединенные сопротивления (резисторы), индуктивности и конденсаторы (емкости).

    Из результатов опыта можно определить, что сдвиг фаз между напряжением и током служит при определении нагрузки и не может зависеть от переменных величины тока и напряжения в электрической сети.

    Как вывод, можно сказать, что:

    1. Составляющие элементы комплексного сопротивления, такие как резистор и емкость, а также проводимость не будут взаимообратными величинами.
    2. Отсутствие одного из элементов делает резистивные и реактивные значения, которые входят в состав комплексного сопротивления и проводимости и делают их величинами взаимообратными.
    3. Реактивные величины в комплексном сопротивлении и проводимости используются с противоположным знаком.

    Угол сдвига фаз между напряжением и током всегда выражается, как главный аргументированный фактор комплексного сопротивления φ.

    При решении ряда практических задач нередко необходимо получить определенный сдвиг фаз, причем не только по величине, но и в заданном направлении. Такие примерами описаны в статье "Группы соединения трансформаторов ".

    Сдвиг на 30 и 60°.

    Соединяя обмотки в звезду и треугольник, получают сдвиги, кратные 30°, причем в зависимости от того, что с чем (концы, начала) соединяют и в каком направлении (от фазы A к фазе B или наоборот), сдвиг получается в ту или иную сторону.

    При соединении в зигзаг – звезду (смотрите статью "Схема соединения "Зигзаг ") конец одной секции соединяется с концом другой секции и угол изменяется на 30°. Если же соединить не конец с концом, а конец с началом, то векторы повернутся на 60° (смотрите рисунок 4, в статье "Некоторые ошибки при соединениях в звезду, треугольник, зигзаг"). Иными словами, пересоединяя обмотки, можно легко получить сдвиг в 30 и 60°.

    Надо при этом иметь в виду следующее. Во-первых, при пересоединении обмоток может измениться не только угол (что требуется), но и напряжение (смотрите рисунок 4, в , в статье "Некоторые ошибки при соединениях в звезду, треугольник, зигзаг "). Во-вторых, встречное включение обмоток – предельный случай – или изменение угла между ними может снизить индуктивное сопротивление, а это приведет к возрастанию тока. Возрастание тока опасно для обмотки и, кроме того, может повлечь насыщение магнитопровода. Дело гораздо серьезнее, чем может показаться на первый взгляд, и поэтому, не убедившись в том, что ток не превысил заданного значения, пересоединения выполнять нельзя.

    Сдвиг на 90°.

    Рассмотрим распространенный пример получения сдвига на 90°. На рисунке 1, а показано включение счетчика реактивной энергии. Заметьте: токовая обмотка (жирная линия) включена в фазу A , а обмотка напряжения присоединена к фазам B и C . Обращаясь к векторной диаграмме на рисунке 1, б , легко видеть, что этим простейшим способом получен сдвиг в 90°, что и требуется в данном случае.

    Рисунок 1. Получение сдвига фаз на 90°.

    Сдвиг на любой угол от 0 до 90°

    легко получить с помощью фазорегулятора – поворотного трехфазного трансформатора. Он представляет собой асинхронную машину с заторможенным ротором. Поворачивая ротор относительно статора, плавно изменяют фазу электродвижущей силы (э. д. с.) ротора, не изменяя ее значения (величины).

    Следует отличать фазорегулятор от потенциал-регулятора, называемого также индукционным регулятором. В фазорегуляторе изменяется только фаза; в потенциал-регуляторе изменяются и напряжение и фаза. Кроме того, у фазорегулятора первичная и вторичная обмотки взаимно изолированы, а у потенциал-регулятора соединены.

    Заметим в заключение, что любые сдвиги фаз также, можно получить соединяя активные и индуктивные сопротивления и емкости. Такие преобразователи находят широкое применение и называются статическими.

    Понравилась статья? Поделитесь с друзьями!