Properties of the function y x to the degree. Power function, its properties and graph Demonstration material Lesson-lecture Concept of function

On the domain of definition of the power function y = x p the following formulas hold:
; ;
;
; ;
; ;
; .

Properties of power functions and their graphs

Power function with exponent equal to zero, p = 0

If the exponent of the power function y = x p is equal to zero, p = 0, then the power function is defined for all x ≠ 0 and is a constant equal to one:
y = x p = x 0 = 1, x ≠ 0.

Power function with natural odd exponent, p = n = 1, 3, 5, ...

Consider a power function y = x p = x n with a natural odd exponent n = 1, 3, 5, ... . This indicator can also be written in the form: n = 2k + 1, where k = 0, 1, 2, 3, ... is a non-negative integer. Below are the properties and graphs of such functions.

Graph of a power function y = x n with a natural odd exponent for various values ​​of the exponent n = 1, 3, 5, ....

Domain: -∞ < x < ∞
Multiple meanings: -∞ < y < ∞
Parity: odd, y(-x) = - y(x)
Monotone: monotonically increases
Extremes: No
Convex:
at -∞< x < 0 выпукла вверх
at 0< x < ∞ выпукла вниз
Inflection points: x = 0, y = 0
x = 0, y = 0
Limits:
;
Private values:
at x = -1,
y(-1) = (-1) n ≡ (-1) 2k+1 = -1
at x = 0, y(0) = 0 n = 0
for x = 1, y(1) = 1 n = 1
Reverse function:
for n = 1, the function is its inverse: x = y
for n ≠ 1, the inverse function is the root of degree n:

Power function with natural even exponent, p = n = 2, 4, 6, ...

Consider a power function y = x p = x n with a natural even exponent n = 2, 4, 6, ... . This indicator can also be written in the form: n = 2k, where k = 1, 2, 3, ... - natural. The properties and graphs of such functions are given below.

Graph of a power function y = x n with a natural even exponent for various values ​​of the exponent n = 2, 4, 6, ....

Domain: -∞ < x < ∞
Multiple meanings: 0 ≤ y< ∞
Parity: even, y(-x) = y(x)
Monotone:
for x ≤ 0 monotonically decreases
for x ≥ 0 monotonically increases
Extremes: minimum, x = 0, y = 0
Convex: convex down
Inflection points: No
Intersection points with coordinate axes: x = 0, y = 0
Limits:
;
Private values:
at x = -1, y(-1) = (-1) n ≡ (-1) 2k = 1
at x = 0, y(0) = 0 n = 0
for x = 1, y(1) = 1 n = 1
Reverse function:
for n = 2, square root:
for n ≠ 2, root of degree n:

Power function with negative integer exponent, p = n = -1, -2, -3, ...

Consider a power function y = x p = x n with a negative integer exponent n = -1, -2, -3, ... . If we put n = -k, where k = 1, 2, 3, ... is a natural number, then it can be represented as:

Graph of a power function y = x n with a negative integer exponent for various values ​​of the exponent n = -1, -2, -3, ... .

Odd exponent, n = -1, -3, -5, ...

Below are the properties of the function y = x n with an odd negative exponent n = -1, -3, -5, ....

Domain: x ≠ 0
Multiple meanings: y ≠ 0
Parity: odd, y(-x) = - y(x)
Monotone: monotonically decreases
Extremes: No
Convex:
at x< 0 : выпукла вверх
for x > 0: convex downward
Inflection points: No
Intersection points with coordinate axes: No
Sign:
at x< 0, y < 0
for x > 0, y > 0
Limits:
; ; ;
Private values:
for x = 1, y(1) = 1 n = 1
Reverse function:
when n = -1,
at n< -2 ,

Even exponent, n = -2, -4, -6, ...

Below are the properties of the function y = x n with an even negative exponent n = -2, -4, -6, ....

Domain: x ≠ 0
Multiple meanings: y > 0
Parity: even, y(-x) = y(x)
Monotone:
at x< 0 : монотонно возрастает
for x > 0: monotonically decreases
Extremes: No
Convex: convex down
Inflection points: No
Intersection points with coordinate axes: No
Sign: y > 0
Limits:
; ; ;
Private values:
for x = 1, y(1) = 1 n = 1
Reverse function:
at n = -2,
at n< -2 ,

Power function with rational (fractional) exponent

Consider a power function y = x p with a rational (fractional) exponent, where n is an integer, m > 1 is a natural number. Moreover, n, m do not have common divisors.

The denominator of the fractional indicator is odd

Let the denominator of the fractional exponent be odd: m = 3, 5, 7, ... . In this case, the power function x p is defined for both positive and negative values ​​of the argument x. Let us consider the properties of such power functions when the exponent p is within certain limits.

The p-value is negative, p< 0

Let the rational exponent (with odd denominator m = 3, 5, 7, ...) be less than zero: .

Graphs of power functions with a rational negative exponent for various values ​​of the exponent, where m = 3, 5, 7, ... - odd.

Odd numerator, n = -1, -3, -5, ...

We present the properties of the power function y = x p with a rational negative exponent, where n = -1, -3, -5, ... is an odd negative integer, m = 3, 5, 7 ... is an odd natural integer.

Domain: x ≠ 0
Multiple meanings: y ≠ 0
Parity: odd, y(-x) = - y(x)
Monotone: monotonically decreases
Extremes: No
Convex:
at x< 0 : выпукла вверх
for x > 0: convex downward
Inflection points: No
Intersection points with coordinate axes: No
Sign:
at x< 0, y < 0
for x > 0, y > 0
Limits:
; ; ;
Private values:
at x = -1, y(-1) = (-1) n = -1
for x = 1, y(1) = 1 n = 1
Reverse function:

Even numerator, n = -2, -4, -6, ...

Properties of the power function y = x p with a rational negative exponent, where n = -2, -4, -6, ... is an even negative integer, m = 3, 5, 7 ... is an odd natural integer.

Domain: x ≠ 0
Multiple meanings: y > 0
Parity: even, y(-x) = y(x)
Monotone:
at x< 0 : монотонно возрастает
for x > 0: monotonically decreases
Extremes: No
Convex: convex down
Inflection points: No
Intersection points with coordinate axes: No
Sign: y > 0
Limits:
; ; ;
Private values:
at x = -1, y(-1) = (-1) n = 1
for x = 1, y(1) = 1 n = 1
Reverse function:

The p-value is positive, less than one, 0< p < 1

Graph of a power function with rational exponent (0< p < 1 ) при различных значениях показателя степени , где m = 3, 5, 7, ... - нечетное.

Odd numerator, n = 1, 3, 5, ...

< p < 1 , где n = 1, 3, 5, ... - нечетное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Domain: -∞ < x < +∞
Multiple meanings: -∞ < y < +∞
Parity: odd, y(-x) = - y(x)
Monotone: monotonically increases
Extremes: No
Convex:
at x< 0 : выпукла вниз
for x > 0: convex upward
Inflection points: x = 0, y = 0
Intersection points with coordinate axes: x = 0, y = 0
Sign:
at x< 0, y < 0
for x > 0, y > 0
Limits:
;
Private values:
at x = -1, y(-1) = -1
at x = 0, y(0) = 0
for x = 1, y(1) = 1
Reverse function:

Even numerator, n = 2, 4, 6, ...

The properties of the power function y = x p with a rational exponent within 0 are presented< p < 1 , где n = 2, 4, 6, ... - четное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Domain: -∞ < x < +∞
Multiple meanings: 0 ≤ y< +∞
Parity: even, y(-x) = y(x)
Monotone:
at x< 0 : монотонно убывает
for x > 0: increases monotonically
Extremes: minimum at x = 0, y = 0
Convex: convex upward for x ≠ 0
Inflection points: No
Intersection points with coordinate axes: x = 0, y = 0
Sign: for x ≠ 0, y > 0
Limits:
;
Private values:
at x = -1, y(-1) = 1
at x = 0, y(0) = 0
for x = 1, y(1) = 1
Reverse function:

The p index is greater than one, p > 1

Graph of a power function with a rational exponent (p > 1) for various values ​​of the exponent, where m = 3, 5, 7, ... - odd.

Odd numerator, n = 5, 7, 9, ...

Properties of the power function y = x p with a rational exponent greater than one: . Where n = 5, 7, 9, ... - odd natural, m = 3, 5, 7 ... - odd natural.

Domain: -∞ < x < ∞
Multiple meanings: -∞ < y < ∞
Parity: odd, y(-x) = - y(x)
Monotone: monotonically increases
Extremes: No
Convex:
at -∞< x < 0 выпукла вверх
at 0< x < ∞ выпукла вниз
Inflection points: x = 0, y = 0
Intersection points with coordinate axes: x = 0, y = 0
Limits:
;
Private values:
at x = -1, y(-1) = -1
at x = 0, y(0) = 0
for x = 1, y(1) = 1
Reverse function:

Even numerator, n = 4, 6, 8, ...

Properties of the power function y = x p with a rational exponent greater than one: . Where n = 4, 6, 8, ... - even natural, m = 3, 5, 7 ... - odd natural.

Domain: -∞ < x < ∞
Multiple meanings: 0 ≤ y< ∞
Parity: even, y(-x) = y(x)
Monotone:
at x< 0 монотонно убывает
for x > 0 monotonically increases
Extremes: minimum at x = 0, y = 0
Convex: convex down
Inflection points: No
Intersection points with coordinate axes: x = 0, y = 0
Limits:
;
Private values:
at x = -1, y(-1) = 1
at x = 0, y(0) = 0
for x = 1, y(1) = 1
Reverse function:

The denominator of the fractional indicator is even

Let the denominator of the fractional exponent be even: m = 2, 4, 6, ... . In this case, the power function x p is not defined for negative values ​​of the argument. Its properties coincide with the properties of a power function with an irrational exponent (see the next section).

Power function with irrational exponent

Consider a power function y = x p with an irrational exponent p. The properties of such functions differ from those discussed above in that they are not defined for negative values ​​of the argument x. For positive values ​​of the argument, the properties depend only on the value of the exponent p and do not depend on whether p is integer, rational, or irrational.

y = x p for different values ​​of the exponent p.

Power function with negative exponent p< 0

Domain: x > 0
Multiple meanings: y > 0
Monotone: monotonically decreases
Convex: convex down
Inflection points: No
Intersection points with coordinate axes: No
Limits: ;
Private meaning: For x = 1, y(1) = 1 p = 1

Power function with positive exponent p > 0

Indicator less than one 0< p < 1

Domain: x ≥ 0
Multiple meanings: y ≥ 0
Monotone: monotonically increases
Convex: convex upward
Inflection points: No
Intersection points with coordinate axes: x = 0, y = 0
Limits:
Private values: For x = 0, y(0) = 0 p = 0 .
For x = 1, y(1) = 1 p = 1

The indicator is greater than one p > 1

Domain: x ≥ 0
Multiple meanings: y ≥ 0
Monotone: monotonically increases
Convex: convex down
Inflection points: No
Intersection points with coordinate axes: x = 0, y = 0
Limits:
Private values: For x = 0, y(0) = 0 p = 0 .
For x = 1, y(1) = 1 p = 1

References:
I.N. Bronstein, K.A. Semendyaev, Handbook of mathematics for engineers and college students, “Lan”, 2009.

Did you like the article? Share with your friends!