За что отвечает кора головного мозга человека. Зоны и доли коры больших полушарий

КОРА ГОЛОВНОГО МОЗГА (cortex encephali ) - все поверхности полушарий большого мозга, покрытые плащом (pallium), образованным серым веществом. Вместе с другими отделами ц. н. с. кора участвует в регуляции и координации всех функций организма, играет исключительно важную роль в психической, или высшей нервной деятельности (см.).

В соответствии с этапами эволюционного развития ц. н. с. кору делят на старую и новую. Старая кора (archicortex - собственно старая кора и paleocortex - древняя кора) - филогенетически более древнее образование, чем новая кора (neocortex), появившаяся в процессе развития больших полушарий головного мозга (см. Архитектоника коры головного мозга , Головной мозг).

Морфологически К. г. м. образована нервными клетками (см.), их отростками и нейроглией (см.), имеющей опорно-трофическую функцию. У приматов и человека в коре насчитывается ок. 10 млрд. нейроцитов (нейронов). В зависимости от формы различают пирамидальные и звездчатые нейроциты, которые характеризуются большим разнообразием. Аксоны пирамидальных нейроцитов направляются в подкорковое белое вещество, а их апикальные дендриты - в наружный слой коры. Звездчатые нейроциты имеют только внутрикорковые аксоны. Дендриты и аксоны звездчатых нейроцитов обильно ветвятся вблизи клеточных тел; часть аксонов подходит к наружному слою коры, где они, следуя горизонтально, образуют густое сплетение с вершинами апикальных дендритов пирамидальных нейроцитов. Вдоль поверхности дендритов имеются почковидные выросты, или шипики, которые представляют собой область аксодендритных синапсов (см.). Мембрана тела клетки является областью аксосоматических синапсов. В каждой области коры имеется множество входных (афферентных) и выходных (эфферентных) волокон. Эфферентные волокна идут к другим областям К. г. м., к подкорковым образованиям или к двигательным центрам спинного мозга (см.). Афферентные волокна входят в кору от клеток подкорковых структур.

Древняя кора у человека и высших млекопитающих состоит из одного клеточного слоя, слабо отдифференцированного от нижележащих подкорковых структур. Собственно старая кора состоит из 2-3 слоев.

Новая кора имеет более сложное строение и занимает (у человека) ок. 96% всей поверхности К. г. м. Поэтому, когда говорят о К. г. м., то обычно подразумевают новую кору, к-рую подразделяют на лобную, височную, затылочную и теменную доли. Эти доли делят на области и цитоархитектонические поля (см. Архитектоника коры головного мозга).

Толщина коры у приматов и человека варьирует от 1,5 мм (на поверхности извилин) до 3-5 мм (в глубине борозд). На срезах, окрашенных по Нисслю, видно слоистое строение коры, к-рое зависит от группировки нейроцитов на разных ее уровнях (слоях). В коре принято различать 6 слоев. Первый слой беден клеточными телами; второй и третий - содержат малые, средние и большие пирамидальные нейроциты; четвертый слой - зона звездчатых нейроцитов; пятый слой содержит гигантопирамидальные нейроциты (гигантские пирамидные клетки); шестой слой характеризуется наличием мультиформных нейроцитов. Однако шестислойная организация коры не является абсолютной, т. к. в действительности во многих отделах коры имеет место постепенный и равномерный переход между слоями. Клетки всех слоев, расположенные на одном перпендикуляре по отношению к поверхности коры, тесно связаны между собой и с подкорковыми образованиями. Такой комплекс называют колонкой клеток. Каждая такая колонка отвечает за восприятие преимущественно одного вида чувствительности. Напр., одна из колонок коркового представительства зрительного анализатора воспринимает движение предмета в горизонтальной плоскости, соседняя - в вертикальной и т. п.

Аналогичные комплексы клеток новой коры имеют горизонтальную ориентацию. Предполагают, что, напр., мелкоклеточные слон II и IV состоят в основном из воспринимающих клеток и являются «входами» в кору, крупноклеточный слой V - это «выход» из коры в подкорковые структуры, а среднеклеточный слой III - ассоциативный, связывает между собой различные зоны коры.

Т. о., можно выделить несколько типов прямых и обратных связей между клеточными элементами коры и подкорковых образований: вертикальные пучки волокон, несущие информацию из подкорковых структур к коре и обратно; внутрикортикальные (горизонтальные) пучки ассоциативных волокон, проходящие на различных уровнях коры и белого вещества.

Вариабельность и своеобразие строения нейроцитов свидетельствуют о чрезвычайной сложности аппаратов внутрикорковых переключений и способов соединений между нейроцитами. Такую особенность строения К. г. м. следует рассматривать как морфол, эквивалент ее чрезвычайной реактивности и функц, пластичности, обеспечивающих ей высшие нервные функции.

Увеличение массы корковой ткани происходило в ограниченном пространстве черепа, поэтому поверхность коры, гладкая у низших млекопитающих, у высших млекопитающих и человека преобразовалась в извилины и борозды (рис. 1). Именно с развитием коры уже в прошлом столетии ученые связывали такие стороны деятельности мозга, как память (см.), интеллект, сознание (см.), мышление (см.) и т. п.

1870 год И. П. Павлов определил как год, «с которого начинается научная плодотворная работа по изучению больших полушарий». В этом году Фрич и Гитциг (G. Fritsch, E. Hitzig, 1870) показали, что электрическое раздражение определенных участков переднего отдела К. г. м. собак вызывает сокращение определенных групп скелетной мускулатуры. Многие ученые полагали, что при раздражении К. г. м. активируются «центры» произвольных движений и моторной памяти. Однако еще Ч. Шеррингтон предпочитал избегать функц, интерпретации этого явления и ограничивался лишь утверждением, что область коры, раздражение к-рой вызывает сокращение мышечных групп, интимно связана со спинным мозгом.

Направления экспериментальных исследований К. г. м. конца прошлого столетия почти всегда были связаны с проблемами клин, неврологии. На этой основе были начаты опыты с частичной или полной декортикацией головного мозга (см.). Первым полную декортикацию у собаки произвел Гольтц (F. L. Goltz, 1892). Декортицированная собака оказалась жизнеспособной, но у нее были резко нарушены многие важнейшие функции - зрение, слух, ориентация в пространстве, координация движений и др. До открытия И. П. Павловым феномена условного рефлекса (см.) интерпретация опытов как с полными, так и частичными экстирпациями коры страдала отсутствием объективного критерия их оценки. Введение условнорефлекторного метода в практику эксперимента с экстирпациями открыло новую эру в исследованиях структурно-функциональной организации К. г. м.

Одновременно с открытием условного рефлекса возник вопрос и о его материальной структуре. Поскольку первые попытки выработать условный рефлекс у декортицированных собак не удались, И. П. Павлов пришел к выводу, что К. г. м. является «органом» условных рефлексов. Однако дальнейшими исследованиями была показана возможность выработки условных рефлексов у декортицированных животных. Было установлено, что условные рефлексы не нарушаются при вертикальных перерезках различных областей К. г. м. и разобщении их с подкорковыми образованиями. Эти факты наряду с электрофизиологическими данными дали повод рассматривать условный рефлекс как результат становления многоканальной связи между различными корковыми и подкорковыми структурами. Недостатки метода экстирпации для изучения значения К. г. м. в организации поведения побудили к разработке методик обратимого, функционального, выключения коры. Буреш и Бурешова (J. Bures, О. Buresova, 1962) применили феномен так наз. распространяющейся депрессии путем аппликации к тому или иному участку коры хлористого калия или других раздражителей. Поскольку депрессия не распространяется через борозды, этот метод можно использовать только на животных с гладкой поверхностью К. г. м. (крысы, мыши).

Другой путь функц, выключения К. г. м.- ее охлаждение. Метод, разработанный Н. Ю. Беленковым с сотр. (1969), состоит в том, что в соответствии с формой поверхности корковых областей, намечаемых к выключению, изготавливаются капсулы, которые вживляются над твердой мозговой оболочкой; во время эксперимента через капсулу пропускается охлажденная жидкость, вследствие чего температура коркового вещества под капсулой снижается до 22-20°. Отведение биопотенциалов с помощью микроэлектродов показывает, что при такой температуре импульсная активность нейронов прекращается. Метод холодовой декортикации, используемый в хрон, опытах на животных, продемонстрировал эффект экстренного отключения новой коры. Оказалось, что такое отключение прекращает осуществление ранее выработанных условных рефлексов. Т. о., было показано, что К. г. м. представляет собой необходимую структуру для проявления условного рефлекса в интактном мозге. Следовательно, наблюдаемые факты выработки условных рефлексов у хирургически декортицированных животных являются результатом компенсаторных перестроек, происходящих в интервале времени от момента операции до начала исследования животного в хрон, эксперименте. Компенсаторные явления имеют место и в случае функц, выключений новой коры. Так же, как и холодовое выключение, острое выключение новой коры у крыс с помощью распространяющейся депрессии резко нарушает условно-рефлекторную деятельность.

Сравнительная оценка эффектов полной и частичной декортикации у различных видов животных показала, что обезьяны переносят эти операции тяжелее, чем кошки и собаки. Степень нарушения функций при экстирпации одних и тех же зон коры различна у животных, стоящих на разных ступенях эволюционного развития. Напр., удаление височных областей у кошек и собак меньше нарушает функцию слуха, чем у обезьян. Точно так же зрение после удаления затылочной доли коры страдает у обезьян в большей степени, чем у кошек и собак. На основании этих данных возникло представление о кортиколизации функций в процессе эволюции ц. н. с., согласно к-рому филогенетически более ранние звенья нервной системы переходят на более низкий уровень иерархии. При этом К. г. м. пластически перестраивает функционирование этих, филогенетически более старых, структур в соответствии с влиянием окружающей среды.

Корковые проекции афферентных систем К. г. м. представляют собой специализированные конечные станции путей от органов чувств. От К. г. м. к мотонейронам спинного мозга в составе пирамидного тракта идут эфферентные пути. Они берут начало преимущественно от двигательной области коры, к-рая у приматов и человека представлена передней центральной извилиной, расположенной кпереди от центральной борозды. Кзади от центральной борозды расположена соматосенсорная область К. г. м.- задняя центральная извилина. Отдельные участки скелетной мускулатуры корти-колизированы в различной степени. Наименее дифференцированно в передней центральной извилине представлены нижние конечности и туловище, большую площадь занимает представительство мышц кисти. Еще более обширная область соответствует мускулатуре лица, языка и гортани. В задней центральной извилине в таком же соотношении, как и в передней центральной извилине, представлены афферентные проекции частей тела. Можно сказать, что организм как бы спроецирован в эти извилины в виде абстрактного «гомункулюса», который характеризуется чрезвычайным перевесом в пользу передних сегментов тела (рис. 2 и 3).

Помимо этого, в состав коры входят ассоциативные, или неспецифические, области, получающие информацию от рецепторов, воспринимающих раздражения различной модальности, и от всех проекционных зон. Филогенетическое развитие К. г. м. характеризуется прежде всего ростом ассоциативных зон (рис. 4) и обособлением их от проекционных. У низших млекопитающих (грызунов) почти вся кора состоит из одних только проекционных зон, выполняющих одновременно и ассоциативные функции. У человека проекционные зоны занимают лишь небольшую часть коры; все остальное отведено под ассоциативные зоны. Предполагают, что ассоциативные зоны играют особо важную роль в осуществлении сложных форм в. н. д.

У приматов и человека наибольшего развития достигает лобная (префронтальная) область. Это филогенетически самая молодая структура, имеющая непосредственное отношение к самым высшим психическим функциям. Однако попытки спроецировать эти функции на отдельные участки лобной коры не имеют успеха. Очевидно, любая часть лобной коры может включаться в осуществление любой из функций. Эффекты, наблюдаемые при разрушении различных участков этой области, относительно кратковременны или часто совсем отсутствуют (см. Лобэктомия).

Приуроченность отдельных структур К. г. м. к определенным функциям, рассматриваемая как проблема локализации функций, остается до сих пор одной из самых трудных проблем неврологии. Отмечая, что у животных после удаления классических проекционных зон (слуховых, зрительных) условные рефлексы на соответствующие раздражители частично сохраняются, И. П. Павлов высказал гипотезу о существовании «ядра» анализатора и его элементов, «рассеянных» по всей К. г. м. С помощью микроэлектродные методы исследования (см.) удалось зарегистрировать в различных областях К. г. м. активность специфических нейроцитов, отвечающих на стимулы определенной сенсорной модальности. Поверхностное отведение биоэлектрических потенциалов выявляет распределение первичных вызванных потенциалов на значительных площадях К. г. м.- за пределами соответствующих проекционных зон и цитоархитектонических полей. Эти факты наряду с поли-функциональностью нарушений при удалении любой сенсорной области или ее обратимом выключении указывают на множественное представительство функций в К. г. м. Двигательные функции также распределены на значительных площадях К. г. м. Так, нейроциты, отростки которых формируют пирамидный тракт, расположены не только в моторных областях, но и за их пределами. Помимо сенсорных и моторных клеток, в К. г. м. имеются еще и промежуточные клетки, или интернейроциты, составляющие основную массу К. г. м. и сосредоточенные гл. обр. в ассоциативных областях. На интернейроциты конвергируют разномодальные возбуждения.

Экспериментальные данные указывают, т. о., на относительность локализации функций в К. г. м., на отсутствие корковых «центров», зарезервированных под ту или иную функцию. Наименее дифференцированными в функц, отношении являются ассоциативные области, обладающие особо выраженными свойствами пластичности и взаимозамещаемости. Из этого, однако, не вытекает, что ассоциативные области эквипотенциальны. Принцип эквипотенциальности коры (равнозначности ее структур), высказанный Лешли (К. S. Lashley) в 1933 г. на основании результатов экстирпаций мало-дифференцированной коры крысы, в целом не может распространяться на организацию кортикальной активности у высших животных и человека. Принципу эквипотенциальности И. П. Павлов противопоставил концепцию о динамической локализации функций в К. г. м.

Решение проблемы структурно-функциональной организации К. г. м. во многом затрудняется отождествлением локализации симптомов экстирпаций и стимуляций определенных корковых зон с локализацией функций К. г. м. Этот вопрос касается уже методологических аспектов нейрофизиол, эксперимента, т. к. с диалектической точки зрения любая структурно-функциональная единица в том виде, в каком она выступает в каждом данном исследовании, представляет собой фрагмент, одну из сторон существования целого, продукт интеграции структур и связей мозга. Напр., положение о том, что функция моторной речи «локализуется» в нижней лобной извилине левого полушария, основано на результатах повреждения этой структуры. В то же время электрическая стимуляция этого «центра» речи никогда не вызывает акта артикуляции. Оказывается, однако, что произнесение целых фраз можно вызвать стимуляцией рострального таламуса, посылающего афферентные импульсы в левое полушарие. Фразы, вызванные такой стимуляцией, не имеют ничего общего с произвольной речью и не адекватны ситуации. Этот высоко-интегрированный эффект стимуляции свидетельствует о том, что восходящие афферентные импульсы трансформируются в нейрональный код, эффективный для высшего координационного механизма моторной речи. Точно так же сложнокоординированные движения, обусловленные раздражением моторной области коры, организуются не теми структурами, которые непосредственно подвергаются раздражению, а соседними или спинальными и экстрапирамидными системами, возбуждаемыми по нисходящим путям. Эти данные показывают, что между корой и подкорковыми образованиями имеется тесная связь. Поэтому нельзя противопоставлять кортикальные механизмы работе подкорковых структур, а надо рассматривать конкретные случаи их взаимодействия.

При электрической стимуляции отдельных корковых областей изменяется деятельность сердечно-сосудистой системы, дыхательного аппарата, жел.-киш. тракта и других висцеральных систем. Влияния К. г. м. на внутренние органы К. М. Быков обосновывал также возможностью образования висцеральных условных рефлексов, что наряду с вегетативными сдвигами при различных эмоциях было положено им в основу концепции существования кортико-висцеральных отношений. Проблема кортико-висцеральных отношений решается в плане изучения модуляции корой деятельности подкорковых структур, имеющих непосредственное отношение к регуляции внутренней среды организма.

Существенную роль играют связи К. г. м. с гипоталамусом (см.).

Уровень активности К. г. м. в основном определяется восходящими влияниями от ретикулярной формации (см.) ствола мозга, к-рую контролируют кортико-фугальные влияния. Эффект последних имеет динамический характер и является следствием текущего афферентного синтеза (см.). Исследования с помощью электроэнцефалографии (см.), в частности кортикографии (т. е. отведения биопотенциалов непосредственно от К. г. м.), казалось бы подтвердили гипотезу о замыкании временной связи между очагами возбуждений, возникающих в кортикальных проекциях сигнального и безусловного раздражителей в процессе образования условного рефлекса. Однако оказалось, что по мере упрочения поведенческих проявлений условного рефлекса электрографические признаки условной связи исчезают. Этот кризис методики электроэнцефалографии в познании механизма условного рефлекса был преодолен в исследованиях М. Н. Ливанова с сотр. (1972). Ими показано, что распространение возбуждения по К. г. м. и проявление условного рефлекса зависит от уровня дистантной синхронизации биопотенциалов, отводимых от пространственно удаленных пунктов К. г. м. Повышение уровня пространственной синхронизации наблюдается при умственном напряжении (рис. 5). В этом состоянии участки синхронизации не сконцентрированы в определенных зонах коры, а распределены по всей ее площади. Корреляционные отношения охватывают пункты всей лобной коры, но вместе с тем повышенная синхронность регистрируется и в предцентральной извилине, в теменной области и в других участках К. г. м.

Головной мозг состоит из двух симметричных частей (полушарий), связанных между собой комиссурами, состоящими из нервных волокон. Оба полушария головного мозга объединяются самой большой комиссурой - мозолистым телом (см.). Его волокна связывают идентичные пункты К. г. м. Мозолистое тело обеспечивает единство функционирования обоих полушарий. При его перерезке каждое полушарие начинает функционировать независимо одно от другого.

В процессе эволюции мозг человека приобрел свойство латерализации, или асимметрии (см.). Каждое его полушарие специализировалось для выполнения определенных функций. У большинства людей доминирующим является левое полушарие, обеспечивающее функцию речи и контроль за действием правой руки. Правое полушарие специализировано для восприятия формы и пространства. Вместе с тем функц, дифференциация полушарий не абсолютна. Тем не менее обширные повреждения левой височной доли сопровождаются, как правило, сенсорными и моторными нарушениями речи. Очевидно, что в основе латерализации лежат врожденные механизмы. Однако потенциальные возможности правого полушария в организации функции речи способны проявляться при повреждении левого полушария у новорожденных.

Имеются основания рассматривать латерализацию как адаптивный механизм, развившийся вследствие усложнения функций головного мозга на высшем этапе его развития. Латерализация препятствует интерференции различных интегративных механизмов во времени. Возможно, что кортикальная специализация противодействует несовместимости различных функциональных систем (см.), облегчает принятие решения о цели и способе действия. Интегративная деятельность мозга не исчерпывается, т. о., внешней (суммативной) целостностью, понимаемой как взаимодействие активностей независимых элементов (будь то нейроциты или целые образования мозга). На примере развития латерализации можно видеть, как сама эта целостная, интегративная деятельность мозга становится предпосылкой дифференциации свойств ее отдельных элементов, наделяет их функц, спецификой. Следовательно, функц, вклад каждой отдельной структуры К. г. м. в принципе нельзя оценить в отрыве от динамики интегративных свойств целостного мозга.

Патология

Кора головного мозга редко поражается изолированно. Признаки ее поражения в большей или меньшей степени обычно сопутствуют патологии головного мозга (см.) и входят в состав ее симптомов. Обычно патол, процессами поражается не только К. г. м., но и белое вещество полушарий. Поэтому под патологией К. г. м. обычно понимают ее преимущественное поражение (диффузное или локальное, без строгой границы между этими понятиями). Наиболее обширное и интенсивное поражение К. г. м. сопровождается исчезновением психической активности, комплексом как диффузных, так и локальных симптомов (см. Апаллический синдром). Наряду с неврол, симптомами поражения двигательной и чувствительной сферы, симптомами поражения различных анализаторов у детей является задержка развития речи и даже полная невозможность становления психики. В К. г. м. при этом наблюдаются изменения цитоархитектоники в виде нарушения слоистости, вплоть до полного ее исчезновения, очаги выпадения нейроцитов с замещением их разрастаниями глии, гетеротопия нейроцитов, патология синаптического аппарата и другие патоморфол, изменения. Поражения К. г. м. наблюдаются при различных врожденных аномалиях мозга в виде анэнцефалии, микрогирии, микроцефалии, при различных формах олигофрении (см.), а также при самых различных инфекциях и интоксикациях с поражением нервной системы, при черепно-мозговых травмах, при наследственных и дегенеративных заболеваниях мозга, нарушениях мозгового кровообращения и т. д.

Изучение ЭЭГ при локализации патол, очага в К. г. м. чаще выявляет преобладание очаговых медленных волн, которые рассматриваются как коррелят охранительного торможения (У. Уолтер, 1966). Слабая выраженность медленных волн в области патол, очага является полезным диагностическим признаком в предоперационной оценке состояния больных. Как показали исследования Н. П. Бехтеревой (1974), проведенные совместно с нейрохирургами, отсутствие медленных волн в области патол, очага является неблагоприятным прогностическим признаком последствий хирургического вмешательства. Для оценки патол, состояния К. г. м. используется также тест на взаимодействие ЭЭГ в зоне очагового поражения с вызванной активностью в ответ на положительные и дифференцировочные условные раздражители. Биоэлектрическим эффектом такого взаимодействия может быть как усиление очаговых медленных волн, так и ослабление их выраженности или усиление частых колебаний типа заостренных бета-волн.

Библиография: Анохин П. К. Биология и нейрофизиология условного рефлекса, М., 1968, библиогр.; Беленков Н. Ю. Фактор структурной интеграции в деятельности мозга, Усп. физиол, наук, т. 6, в. 1, с. 3, 1975, библиогр.; Бехтерева Н. П. Нейрофизиологические аспекты психической деятельности человека, Л., 1974; Грей Уолтер, Живой мозг, пер. с англ., М., 1966; Ливанов М. Н. Пространственная организация процессов головного мозга, М., 1972, библиогр.; Лурия А. Р. Высшие корковые функции человека и их нарушения при локальных поражениях мозга, М., 1969, библиогр.; Павлов И. П. Полное собрание сочинений, т. 3-4, М.-Л., 1951; Пенфильд В. и Робертс Л. Речь и мозговые механизмы, пер. с англ., Л., 1964, библиогр.; Поляков Г. И. Основы систематики нейронов новой коры большого мозга человека, М., 1973, библиогр.; Цитоархитектоника коры большого мозга человека, под ред. С. А. Саркисова и др., с. 187, 203, М., 1949; Шаде Дж. и Форд Д. Основы неврологии, пер. с англ., с. 284, М., 1976; M a s t e г t о n R. B. a. B e r k 1 e y M. A. Brain function, Ann. Rev. Psychol., у. 25, p. 277, 1974, bibliogr.; S h о 1 1 D. A. The organization of cerebral cortex, L.-N. Y., 1956, bibliogr.; Sperry R. W. Hemisphere deconnection and unity in conscious awareness, Amer. Psychol., v. 23, p. 723, 1968.

H. Ю. Беленков.

Кора больших полушарий головного мозга представляет собой наиболее молодое образование центральной нервной системы.Деятельность коры больших полушарий основана на принципе условного рефлекса, поэтому ее называют условно-рефлекторной. Она осуществляет быструю связь с внешней средой и приспособление организма к изменяющимся условиям внешней среды.

Глубокие борозды делят каждое полушарие большого мозга на лобную, височную, теменную, затылочную доли и островок . Островок расположен в глубине сильвиевой борозды и закрыт сверху частями лобной и теменной долей мозга.

Кора большого мозга делится на древнюю (архиокортекс ), старую (палеокортекс ) и новую (неокортекс). Древняя кора, наряду с другими функциями, имеет отношение к обонянию и обеспечению взаимодействия систем мозга. Старая кора включает поясную извилину, гиппокамп. У новой коры наибольшее развитие величины, дифференциации функций отмечается у человека. Толщина новой коры 3-4 мм. Общая площадь коры взрослого человека 1700-2000 см 2 , а число нейронов — 14 млрд (если их расположить в ряд, то образуется цепь протяженностью 1000 км) — постепенно истощается и к старости составляет 10 млрд (более 700 км). В составе коры имеются пирамидные, звездчатые и веретенообразные нейроны.

Пирамидные нейроны имеют разную величину, их дендриты несут большое количество шипиков: аксон пирамидного нейрона идет через белое вещество в другие зоны коры или структуры ЦНС.

Звездчатые нейроны имеют короткие, хорошо ветвящиеся дендриты и короткий аксон, обеспечивающий связи нейронов в пределах самой коры большого мозга.

Веретенообразные нейроны обеспечивают вертикальные или горизонтальные взаимосвязи нейронов разных слоев коры.

Строение коры больших полушарий

В коре содержится большое количество глиальных клеток, выполняющих опорную, обменную, секреторную, трофическую функции.

Наружная поверхность коры разделена на четыре доли: лобную, теменную, затылочную и височную. Каждая доля имеет свои проекционные и ассоциативные области.

Кора большого мозга имеет шестислойное строение (рис. 1-1):

  • молекулярный слой (1) светлый, состоит из нервных волокон и имеет небольшое количество нервных клеток;
  • наружный зернистый слой (2) состоит из звездчатых клеток, определяющих длительность циркулирования возбуждения в коре головного мозга, т.е. имеющих отношение к памяти;
  • слой пирамидных меток (3) формируется из пирамидных клеток малой величины и вместе со слоем 2 обеспечивает корко-корко- вые связи различных извилин мозга;
  • внутренний зернистый слой (4) состоит из звездчатых клеток, здесь заканчиваются специфические таламокортикальные пути, т.е. пути, начинающиеся от рецепторов-анализаторов.
  • внутренний пирамидный слой (5) состоит из гигантских пирамидных клеток, которые являются выходными нейронами, аксоны их идут в ствол мозга и спинной мозг;
  • слой полиморфных клеток (6) состоит из неоднородных по величине клеток треугольной и веретенообразной формы, которые образуют кортикоталамические пути.

I — афферентные пути из таламуса: СТА — специфические таламические афференты; НТА — неспецифические таламические афференты; ЭМВ — эфферентные моторные волокна. Цифрами обозначены слои коры; II — пирамидный нейрон и распределение окончаний на нем: А — неспецифические афферентные волокна из ретикулярной формации и ; Б — возвратные коллатерали от аксонов пирамидных нейронов; В — комиссуральные волокна из зеркальных клеток противоположного полушария; Г — специфические афферентные волокна из сенсорных ядер таламуса

Рис. 1-1. Связи коры больших полушарий.

Клеточный состав коры по разнообразию морфологии, функций, формам связи не имеет себе равных в других отделах ЦНС. Нейронный состав, распределение по слоям в разных областях коры различны. Это позволило выделить в мозге человека 53 цитоархитектонических поля. Разделение коры большого мозга на цитоархитектонические поля более четко формируется по мере совершенствования ее функции в филогенезе.

Функциональной единицей коры является вертикальная колонка диаметром около 500 мкм. Колонка - зона распределения разветвлений одного восходящего (афферентного) таламокортикального волокна. Каждая колонка содержит до 1000 нейронных ансамблей. Возбуждение одной колонки тормозит соседние колонки.

Восходящий путь проходит через все корковые слои (специфический путь). Неспецифический путь также проходит через все корковые слои. Белое вещество полушарий расположено между корой и базальными ганглиями. Оно состоит из большого количества волокон, идущих в разных направлениях. Это проводящие пути конечного мозга. Различают три вида путей.

  • проекционный — связывает кору с промежуточным мозгом и другими отделами ЦНС. Это восходящие и нисходящие пути;
  • комиссуральный - его волокна входят в состав мозговых комиссур, которые соединяют соответствующие участки левого и правого полушарий. Входят в состав мозолистого тела;
  • ассоциативный - связывает участки коры одного и того же полушария.

Зоны коры больших полушарий

По особенностям клеточного состава поверхность коры подразделяют на структурные единицы следующего порядка: зоны, области, подобласти, поля.

Зоны коры головного мозга разделяются на первичные, вторичные и третичные проекционные зоны. В них расположены специализированные нервные клетки, к которым поступают импульсы от определенных рецепторов (слуховых, зрительных и т.д.). Вторичные зоны представляют собой периферические отделы ядер анализаторов. Третичные зоны получают обработанную информацию от первичных и вторичных зон коры больших полушарий и играют важную роль в регуляции условных рефлексов.

В сером веществе коры больших полушарий различают сенсорные, моторные и ассоциативные зоны:

  • сенсорные зоны коры больших полушарий - участки коры, в которых располагаются центральные отделы анализаторов:
    зрительная зона — затылочная доля коры больших полушарий;
    слуховая зона — височная доля коры больших полушарий;
    зона вкусовых ощущений — теменная доля коры больших полушарий;
    зона обонятельных ощущений — гиппокамп и височная доля коры больших полушарий.

Соматосенсорная зона находится в задней центральной извилине, сюда приходят нервные импульсы от проприорецепторов мышц, сухожилий, суставов и импульсы от температурных, тактильных и других рецепторов кожи;

  • моторные зоны коры больших полушарии - участки коры, при раздражении которых появляются двигательные реакции. Располагаются в передней центральной извилине. При ее поражении наблюдаются значительные нарушения движения. Пути, по которым импульсы идут от больших полушарий к мышцам, образуют перекрест, поэтому при раздражении моторной зоны правой стороны коры возникает сокращение мышц левой стороны тела;
  • ассоциативные зоны - отделы коры, находящиеся рядом с сенсорными зонами. Нервные импульсы, поступающие в сенсорные зоны, приводят к возбуждению ассоциативных зон. Особенностью их является то, что возбуждение может возникать при поступлении импульсов от различных рецепторов. Разрушение ассоциативных зон приводит к серьезным нарушениям обучения и памяти.

Речевая функция связана с сенсорными и двигательными зонами. Двигательный центр речи (центр Брока) находится в нижней части левой лобной доли, при его разрушении нарушается речевая артикуляция; при этом больной понимает речь, но сам говорить не может.

Слуховой центр речи (центр Вернике) расположен в левой височной доле коры больших полушарий, при его разрушении наступает словесная глухота: больной может говорить, излагать устно свои мысли, но не понимает чужой речи; слух сохранен, но больной не узнает слов, нарушается письменная речь.

Речевые функции, связанные с письменной речью — чтение, письмо, — регулируются зрительным центром речи, расположенным на границе теменной, височной и затылочной долей коры головного мозга. Его поражение приводит к невозможности чтения и письма.

В височной доле находится центр, отвечающий за запоминание слое. Больной с поражением этого участка не помнит названия предметов, ему необходимо подсказывать нужные слова. Забыв название предмета, больной помнит его назначение, свойства, поэтому долго описывает их качества, рассказывает, что делают с этим предметом, но назвать его не может. Например, вместо слова «галстук» больной говорит: «это то, что надевают на шею и завязывают специальным узлом, чтобы было красиво, когда идут в гости».

Функции лобной доли:

  • управление врожденными поведенческими реакциями при помощи накопленного опыта;
  • согласование внешних и внутренних мотиваций поведения;
  • разработка стратегии поведения и программы действия;
  • мыслительные особенности личности.

Состав коры больших полушарий

Кора больших полушарий головного мозга является высшей структурой ЦНС и состоит из нервных клеток, их отростков и нейроглии. В составе коры имеются звездчатые, веретенообразные и пирамидные нейроны. Благодаря наличию складок кора имеет большую поверхность. Выделяют древнюю кору (архикортекс) и новую кору (неокортекс). Кора состоит из шести слоев (рис. 2).

Рис. 2. Кора больших полушарий головного мозга

Верхний молекулярный слой образован в основном дендритами пирамидных клеток нижележащих слоев и аксонами неспецифических ядер таламуса. На этих дендритах формируют синапсы афферентные волокна, приходящие от ассоциативных и неспецифических ядер таламуса.

Наружный гранулярный слой образован мелкими звездчатыми клетками и частично малыми пирамидными клетками. Волокна клеток этого слоя расположены преимущественно вдоль поверхности коры, формируя кортикокортикальные связи.

Слой пирамидных клеток малой величины.

Внутренний гранулярный слой, образованный звездчатыми клетками. В нем заканчиваются афферентные таламокортикальные волокна, начинающиеся от рецепторов анализаторов.

Внутренний пирамидный слой состоит из крупных пирамидных клеток, участвующих в регуляции сложных форм движения.

Мультиформный слой состоит из верстеновидных клеток, образующих кортикоталамические пути.

По функциональной значимости нейроны коры подразделяют на сенсорные , воспринимающие афферентные импульсы от ядер таламуса и рецепторов сенсорных систем; моторные , посылающие импульсы к подкорковым ядрам, промежуточному, среднему, продолговатому мозгу, мозжечку, ретикулярной формации и спинному мозгу; и промежуточные , осуществляющие связь между нейронами коры больших полушарий. Нейроны коры больших полушарий находятся в состоянии постоянного возбуждения, не исчезающего и во время сна.

В кору больших полушарий, к сенсорным нейронам поступают импульсы от всех рецепторов организма через ядра таламуса. И каждый орган имеет свою проекцию или корковое представительство, расположенное в определенных областях больших полушарий.

В коре больших полушарий имеется четыре чувствительные и четыре двигательные области.

Нейроны двигательной коры получают афферентную импульсацию через таламус от мышечных, суставных и кожных рецепторов. Основные эфферентные связи двигательной коры осуществляются через пирамидные и экстрапирамидные пути.

У животных наиболее развита лобная область коры и ее нейроны участвуют в обеспечении целенаправленного поведения. Если удалить эту долю коры, животное становится вялым, сонливым. В височной области локализуется участок слуховой рецепции, и сюда поступают нервные импульсы от рецепторов улитки внутреннего уха. Область зрительной рецепции находится в затылочных долях коры головного мозга.

Теменная область, внеядерная зона, играет важную роль в организации сложных форм высшей нервной деятельности. Здесь расположены рассеянные элементы зрительного и кожного анализаторов, осуществляется межанализаторный синтез.

Рядом с проекционными зонами располагаются ассоциативные зоны, которые осуществляют связь между сенсорной и двигательной зонами. Ассоциативная кора принимает участие в конвергенции различных сенсорных возбуждений, позволяющей осуществлять сложную обработку информации о внешней и внутренней среде.

Мозг это загадочный орган, который постоянно изучается учеными и остается до конца не исследованным. Система строения не простая и является сочетанием нейронных клеток, которые группируются в отдельные отделы. Кора головного мозга имеется у большинства животных и млекопитающих, но именно в человеческом организме она получила большего развития. Этому способствовала трудовая активность.

Почему мозг называют серым веществом или серой массой? Он сероватый, но в нем присутствует белый, красный и черные цвет. Серая субстанция представляет разные типы клеток, а белая нервную материю. Красный цвет это кровяные сосуды, а черный это меланин пигмент, который отвечает за окраску волос и кожи.

Строение мозга

Главный орган делится на пять основных частей. Первая часть продолговатая. Это продление спинного мозга, который контролирует связь с деятельностью тела и состоит из серой и белой субстанции. Вторая, средняя включает четыре бугорка, из которых два ответственные за слуховую, а два за зрительскую функцию. Третья, задняя включает мосток и церебеллум или мозжечок. Четвертая, буферная гипоталамус и таламус. Пятая, конечная, которая формирует два полушария.

Поверхность состоит из бороздочек и мозгов, покрытых оболочкой. Этот отдел составляет 80 % общего веса человека. Также мозг можно разделить на три части церебеллум, стволик и полушария. Он покрыт тремя слоями, которые предохраняют и питают основной орган. Это паутинный слой, в котором циркулирует мозговая жидкость, мягкий содержит кровяные сосуды, твердый близкий к мозгу и защищает его от повреждений.

Функции мозга


Мозговая деятельность включает основные функции серого вещества. Это чувствительные, зрительные, слуховые, обонятельные, осязательные реакции и моторные функции. Однако все главные центры управления находятся в продолговатой части, где координируется деятельность сердечно-сосудистой системы, защитных реакций и мышечной деятельности.

Двигательные пути продолговатого органа создают перекрещивание с переходом на противолежащую сторону. Это ведет к тому, что рецепторы сначала образуются в правой области, после чего поступают импульсы в левую область. Речь выполняется в больших полушариях мозга. Задний отдел отвечает за вестибулярный аппарат.

Кора головного мозга является центром высшей нервной (психической) деятельности человека и контролирует выполнение огромного количества жизненно важных функций и процессов. Она покрывает всю поверхность больших полушарий и занимает около половины их объема.

Большие полушария головного мозга занимают около 80% объема черепной коробки, и состоят из белого вещества, основа которого состоит из длинных миелиновых аксонов нейронов. Снаружи полушария покрывает серое вещество или кора головного мозга, состоящая из нейронов, безмиелиновых волокон и глиальных клеток, которые также содержатся в толще отделов этого органа.

Поверхность полушарий условно делится на несколько зон, функциональность которых заключается в управлении организмом на уровне рефлексов и инстинктов. Также в ней находятся центры высшей психической деятельности человека, обеспечивающие сознание, усвоение поступившей информации, позволяющей адаптироваться в окружающей среде, и через нее, на уровне подсознания, посредством гипоталамуса контролируется вегетативная нервная система (ВНС), управляющая органами кровообращения, дыхания, пищеварения, выделения, размножения, а также метаболизмом.

Для того чтобы разобраться что такое кора мозга и каким образом осуществляется ее работа, требуется изучить строение на клеточном уровне.

Функции

Кора занимает большую часть больших полушарий, а ее толщина не равномерна по всей поверхности. Такая особенность обусловлена большим количеством связующих каналов с центральной нервной системой (ЦНС), обеспечивающих функциональную организацию коры мозга.

Эта часть головного мозга начинает образовываться еще во время внутриутробного развития и совершенствуется на протяжении всей жизни, посредством получения и обработки сигналов, поступающих из окружающей среды. Таким образом, она отвечает за выполнение следующих функций головного мозга:

  • связывает органы и системы организма между собой и окружающей средой, а также обеспечивает адекватную реакцию на изменения;
  • обрабатывает поступившую информацию от моторных центров с помощью мыслительных и познавательных процессов;
  • в ней формируется сознание, мышление, а также реализовывается интеллектуальный труд;
  • осуществляет управление речевыми центрами и процессами, характеризующими психоэмоциональное состояние человека.

При этом данные поступают, обрабатываются, сохраняются благодаря значительному количеству импульсов, проходящих и образующихся в нейронах, связанных длинными отростками или аксонами. Уровень активности клеток можно определить по физиологическому и психическому состоянию организма и описать с помощью амплитудных и частотных показателей, так как природа этих сигналов похожа на электрические импульсы, а их плотность зависит от участка, в котором происходит психологический процесс.

До сих пор неясно, каким образом лобная часть коры больших полушарий влияет на работу организма, но известно, что она мало восприимчива к процессам, происходящим во внешней среде, поэтому все опыты с воздействием электрических импульсов на этот участок мозга, не находят яркого отклика в структурах. Однако отмечается, что люди, у которых лобная часть повреждена, испытывают проблемы в общении с другими индивидами, не могут реализовать себя в какой-либо трудовой деятельности, а также им безразличен их внешний вид и сторонние мнение. Иногда встречаются и другие нарушения в осуществлении функций этого органа:

  • отсутствие концентрации внимания на предметах обихода;
  • проявление творческой дисфункции;
  • нарушения психоэмоционального состояния человека.

Поверхность коры полушарий поделена на 4 зоны, очерченные наиболее четкими и значимыми извилинами. Каждая из частей при этом контролирует основные функции коры головного мозга:

  1. теменная зона - отвечает за активную чувствительность и музыкальное восприятие;
  2. в затылочной части расположена первичная зрительная область;
  3. височная или темпоральная отвечает за речевые центры и восприятие звуков поступивших из внешней среды, кроме того участвует в формировании эмоциональных проявлений, таких как радость, злость, удовольствие и страх;
  4. лобная зона управляет двигательной и психической активностью, а также руководит речевой моторикой.

Особенности строения коры мозга

Анатомическое строение коры больших полушарий обусловливает ее особенности и позволяет выполнять возложенные на нее функции. Кора головного мозга владеет следующим рядом отличительных черт:

  • нейроны в ее толще располагаются послойно;
  • нервные центры находятся в конкретном месте и отвечают за деятельность определенного участка организма;
  • уровень активности коры зависит от влияния ее подкорковых структур;
  • она имеет связи со всеми нижележащими структурами центральной нервной системы;
  • наличие полей разных по клеточному строению, что подтверждается гистологическим исследованием, при этом каждое поле отвечает за выполнение какой-либо высшей нервно деятельности;
  • присутствие специализированных ассоциативных областей позволяет устанавливать причинно-следственную связь между внешними раздражителями и ответом организма на них;
  • способность к замещению поврежденных участков близлежащими структурами;
  • этот отдел мозга способен сохранять следы возбуждения нейронов.

Большие полушария головного мозга состоят главным образом из длинных аксонов, а также содержит в своей толще скопления нейронов, образующих наибольшие ядра основания, которые входят в состав экстрапирамидальной системы.

Как уже говорилось, формирование коры мозга происходит еще во время внутриутробного развития, причем вначале кора состоит из нижнего слоя клеток, а уже в 6 месяцев ребенка в ней сформированы все структуры и поля. Окончательное становление нейронов происходит к 7-летнему возрасту, а рост их тел завершается в 18 лет.

Интересен тот факт, что толщина коры не равномерна на всей протяженности и включает в себя разное количество слоев: например, в области центральной извилины она достигает своего максимального размера и насчитывает все 6 слоев, а участки старой и древней коры имеют 2-х и 3-х слойное строение соответственно.

Нейроны этой части мозга запрограммированы на восстановление поврежденного участка посредством синоптических контактов, таким образом каждая из клеток активно старается восстановить поврежденные связи, что обеспечивает пластичность нейронных корковых сетей. Например, при удалении или дисфункции мозжечка, нейроны, связывающие его с конечным отделом, начинают прорастать в кору больших полушарий. Кроме того пластичность коры также проявляется в обычных условиях, когда происходит процесс обучения новому навыку или в результате патологии, когда функции, выполняемые поврежденной зоной, переходят на соседние участки мозга или даже полушария.

Кора мозга обладает способностью сохранять следы возбуждения нейронов длительное время. Эта особенность позволяет обучаться, запоминать и отвечать определенной реакцией организма на внешние раздражители. Так происходит формирование условного рефлекса, нервный путь которого состоит из 3 последовательно соединенных аппарата: анализатора, замыкательного аппарата условно-рефлексных связей и рабочего прибора. Слабость замыкательной функции коры и следовых проявлений можно наблюдать у детей с выраженной умственной отсталостью, когда образовавшиеся условные связи между нейронами хрупки и ненадежны, что влечет за собой трудности в обучении.

Кора головного мозга включает в себя 11 областей, состоящих из 53 полей, каждому из которых в нейрофизиологии присвоен свой номер.

Области и зоны коры

Кора относительно молодая часть ЦНС, развывшаяся из конечного отдела мозга. Эволюционно становление этого органа происходило поэтапно, поэтому ее принято разделять на 4 типа:

  1. Архикортекс или древняя кора в связи с атрофией обоняния превратился в гиппокамповую формацию и состоит из гиппокампа и сопряженных ему структур. С помощью ее регулируется поведение, чувства и память.
  2. Палеокортекс или старая кора, составляет основную часть обонятельной зоны.
  3. Неокортекс или новая кора имеет толщину слоя около 3-4 мм. Является функциональной частью и совершает высшую нервную деятельность: обрабатывает сенсорную информацию, отдает моторные команды, а также в ней формируется осознанное мышление и речь человека.
  4. Мезокортекс является промежуточным вариантом первых 3 типов коры.

Физиология коры больших полушарий

Кора головного мозга имеет сложную анатомическую структуру и включает в себя сенсорные клетки, моторные нейроны и интернероны, обладающих способностью останавливать сигнал и возбуждаться в зависимости от поступивших данных. Организация этой части мозга построена по колончатому принципу, в котором колонки делаться на микромодули, имеющие однородное строение.

Основу системы микромодулей составляют звездчатые клетки и их аксоны, при этом все нейроны одинаково реагируют на поступивший афферентный импульс и посылают также синхронно в ответ эфферентный сигнал.

Формирование условных рефлексов, обеспечивающих полноценное функционирование организма, и происходит благодаря связи головного мозга с нейронами, расположенными в различных частях тела, а кора обеспечивает синхронизацию умственной деятельности с моторикой органов и областью, отвечающей за анализ поступающих сигналов.

Передача сигнала в горизонтальном направлении происходит через поперечные волокна, находящиеся в толще коры, и передают импульс от одной колонки к другой. По принципу горизонтальной ориентации кору мозга можно поделить на следующие области:

  • ассоциативная;
  • сенсорная (чувствительная);
  • моторная.

При изучении этих зон применялись различные способы воздействия на нейроны, входящие в ее состав: химическое и физическое раздражение, частичное удаление участков, а также выработка условных рефлексов и регистрация биотоков.

Ассоциативная зона связывает поступившую сенсорную информацию с полученными ранее знаниями. После обработки формирует сигнал и передает его в двигательную зону. Таким образом она участвует в запоминании, мышлении и обучении новым навыкам. Ассоциативные участки коры головного мозга расположены в близости с соответствующей сенсорной зоной.

Чувствительная или сенсорная зона занимает 20% коры головного мозга. Она также состоит из нескольких составляющих:

  • соматосенсорной, расположенной в теменной зоне отвечает за тактильную и вегетативную чувствительность;
  • зрительной;
  • слуховой;
  • вкусовой;
  • обонятельной.

Импульсы от конечностей и органов осязания левой стороны тела, поступают по афферентным путям в противоположную долю больших полушарий для последующей обработки.

Нейроны моторной зоны возбуждаются при помощи импульсов, поступивших от клеток мускулатуры, и находятся в центральной извилине лобной доли. Механизм поступления данных схож с механизмом сенсорной зоны, так как двигательные пути образуют перехлест в продолговатом мозге и следуют в расположенную напротив моторную зону.

Извилины борозды и щели

Кора больших полушарий образована несколькими слоями нейронов. Характерной особенностью этой части мозга является большое количество морщин или извилин, благодаря чему ее площадь во много раз превосходит площадь поверхности полушарий.

Корковые архитектонические поля определяют функциональное строение участков коры головного мозга. Все они различны по морфологическим признакам и регулируют разные функции. Таким образом выделяется 52 различных поля, расположенных на определенных участках. По Бродману это разделение выглядит следующим образом:

  1. Центральная борозда разделяет лобную долю от теменной области, впереди нее пролегает предцентральная извилина, а сзади - позадицентральная.
  2. Боковая борозда отгораживает теменную зону от затылочной. Если развести ее боковые края то внутри можно рассмотреть ямку, в центре которой имеется островок.
  3. Теменно-затылочная борозда отделяет теменную долю от затылочной.

В предцентральной извилине расположено ядро двигательного анализатора, при этом к мышцам нижней конечности относятся верхние части передней центральной извилины, а к мышцам полости рта, глотки и гортани – нижние.

Правосторонняя извилина образует связь с двигательным аппаратом левой половины тела, левосторонняя – с правой частью.

В позадицентральной извилине 1 доли полушария содержится ядро анализатора тактильных ощущений и она также связана с противолежащей частью тела.

Клеточные слои

Кора головного мозга осуществляет свои функции посредством нейронов, находящихся в ее толще. Причем количество слоев этих клеток может отличаться в зависимости от участка, габариты которых также разнятся по размеру и топографии. Специалисты выделяют следующие слои коры головного мозга:

  1. Поверхностный молекулярный сформирован в основном из дендритов, с небольшим вкраплением нейронов, отростки которых не покидают границы слоя.
  2. Наружный зернистый состоит из пирамидальных и звездчатых нейронов, отростки которых связывают его со следующим слоем.
  3. Пирамидальный образован пирамидными нейронами, аксоны которых направлены вниз, где обрываются или образуют ассоциативные волокна, а дендриты их соединяют этот слой с предыдущим.
  4. Внутренний зернистый слой сформирован звездчатыми и малыми пирамидальными нейронами, дендриты которых уходят в пирамидальный слой, а также его длинные волокна уходят в верхние слои или спускаются вниз в белое вещество мозга.
  5. Ганглионарный состоит из крупных пирамидальных нейроцитов, их аксоны выходят за пределы коры и связывают различные структуры и отделы ЦНС между собой.

Мультиформный слой сформирован всеми видами нейронов, а их дендриты ориентированы в молекулярный слой, а аксоны пронизывают предыдущие слои или выходят за пределы коры и образуют ассоциативные волокна, образующие связь клеток серого вещества с остальными функциональными центрами головного мозга.

Видео: Кора больших полушарий головного мозга

Кора головного мозга — высший отдел ЦНС, который обеспечивает совершенную организацию поведения человека. По факту она предопределяет сознание, участвует в управлении мышлением, способствует обеспечению взаимосвязи с внешним миром и функционирования организма. Она устанавливает взаимодействие с внешним миром посредством рефлексов, что позволяет надлежащим образом адаптироваться к новым условиям.

Указанный отдел ответственный за работу самого мозга. Сверху определенных участков, взаимосвязанных с органами восприятия, образовались зоны, обладающие подкорковым белым веществом. Они важны при сложном обрабатывании данных. Вследствие появления такого органа в мозге начинается следующая стадия, на которой значение ее функционирования существенно возрастает. Данный отдел является органом, который выражает индивидуальность и сознательную деятельность индивида.

Общая информация о коре ГМ

Представляет собой поверхностный слой толщиной до 0,2 см, который покрывает полушария. Он предусматривает вертикально ориентированные нервные окончания. Этот орган содержит центростремительные и центробежные нервные отростки, нейроглии. Каждая доля этого отдела несет ответственность за определенные функции:

  • – слуховая функция и обоняние;
  • затылочная – зрительное восприятие;
  • теменная – осязание и вкусовые рецепторы;
  • лобная – речь, двигательная активность, сложные мыслительные процессы.

По факту кора предопределяет сознательную деятельность индивида, участвует в управлении мышлением, взаимодействует с внешним миром.

Анатомия

Выполняемые корой функции зачастую обусловлены ее анатомическим строением. Структура имеет свои характерные черты, выраженные в разном числе слоев, габаритах, анатомии образующих орган нервных окончаний. Специалисты выделяют следующие разновидности слоев, взаимодействующих между собой и помогающих функционировать системе в целом:

  • Молекулярный слой. Помогает создать хаотично связанных дендритных формирований с малым числом клеток, имеющих веретенообразную форму и обусловливающих ассоциативную деятельность.
  • Наружный слой. Выражается нейронами, имеющими разные очертания. После них локализуются внешние контуры структур, имеющих пирамидальную форму.
  • Наружный слой пирамидального типа. Предполагает наличие нейронов разных размеров. По форме данные клетки схожи с конусом. Сверху выходит дендрит, обладающий наибольшими размерами. связаны при помощи деления на незначительные образования.
  • Зернистый слой. Предусматривает нервные окончания незначительного размера, локализованных обособленно.
  • Пирамидальный слой. Предполагает наличие нейронных цепей, обладающих различными габаритами. Верхние отростки нейронов способны доходить до начального слоя.
  • Покров, содержащий нейронные связи, напоминающие веретено. Часть из них, находящаяся в нижней точке, может достигать уровня белого вещества.
  • Лобная доля
  • Играет ключевую роль для сознательной деятельности. Участвует в запоминании, внимании, мотивации и прочих задачах.

Предусматривает наличие 2 парных долей и занимает 2/3 всего мозга. Полушария осуществляют контроль противоположных сторон туловища. Так, левая доля регулирует работу мышц правой стороны и наоборот.

Лобные части имеют важное значение в последующем планировании, включая управление и принятие решений. Кроме того, они выполняют следующие функции:

  • Речевая. Способствует выражению словами мыслительных процессов. Поражение данного участку может повлиять на восприятие.
  • Моторика. Дает возможность влиять на двигательную активность.
  • Сравнительные процессы. Способствует проведению классификации предметов.
  • Запоминание. Каждый участок мозга имеет важное значение в процессах запоминания. Лобная часть формирует долгосрочную память.
  • Личностное формирование. Дает возможность взаимодействовать импульсам, памяти и прочим задачам, образующим главные характеристики индивида. Поражение лобной доли кардинальным образом меняет личность.
  • Мотивация. Большая часть чувствительных нервных отростков расположены в лобной части. Дофамин способствует поддержанию мотивационной составляющей.
  • Контроль внимания. Если лобные части не способны осуществлять управление вниманием, то формируется синдром нехватки внимания.

Теменная доля

Охватывает верхнюю и боковую части полушария, а также разделяются центральной бороздой. Функции, которые выполняет данный участок, различаются для доминантной и недоминантной сторон:

  • Доминантная (преимущественно левая). Несет ответственность за возможность понимания устройства целого через соотношение его составляющих и за синтез информации. Кроме того, дает возможность осуществления взаимосвязанных движений, которые требуются для получения конкретного результата.
  • Недоминантная (преимущественно правая). Центр, который перерабатывает данные, поступающие из затылочной части, и обеспечивает 3-хмерное восприятие происходящего. Поражение данного участка ведет к неспособности распознавания объектов, лиц, пейзажей. Так как зрительные образы перерабатываются в мозге обособленно от данных, поступающих из остальных органов чувств. Кроме того, сторона принимает участие в ориентации в пространстве человека.

Обе теменные части принимают участие в восприятии температурных изменений.

Височная

Она реализует сложную психическую функцию – речь. Расположена на обоих полушариях сбоку в нижней части, тесно взаимодействуя с близлежащими отделами. Данная часть коры обладает наиболее выраженными контурами.

Височные участки осуществляют обработку слуховых импульсов, преобразуя их в звуковой образ. Имеют важное значение в обеспечении речевых коммуникативных навыков. Непосредственно в данном отделе происходит распознавание услышанной информации, выбор языковых единиц для смысловой выраженности.

На сегодняшний день подтверждено, что возникновение сложностей с обонянием у больного преклонного возраста сигнализирует о формирующемся заболевании Альцгеймера.

Незначительный участок внутри височной доли (), осуществляет контроль долговременной памяти. Непосредственно височная часть накапливает воспоминания. Доминантный отдел взаимодействует с вербальной памятью, недоминантный способствует зрительному запоминанию образов.

Одновременное повреждение двух долей ведет к безмятежному состоянию, потере возможности идентификации внешних образов и повышенной сексуальности.

Островок

Островок (закрытая долька) расположен в глуби боковой борозды. От смежных отделов островок отделяется круговой бороздой. Верхний участок закрытой дольки разделяется на 2 части. Здесь проецируется вкусовой анализатор.

Формирующая дно латеральной борозды, закрытая долька является выступом, верхняя часть которого направлена наружу. Островок отделяется круговой бороздой от близлежащих долей, которые формируют покрышку.

Верхний отдел закрытой дольки подразделяется на 2 части. В первой локализуется прецентральная борозда, а находящаяся посреди них расположена передняя центральная извилина.

Борозды и извилины

Являют собой впадины и находящиеся посреди них складки, которые локализуются на поверхности мозговых полушарий. Борозды способствуют увеличению коры полушарий, не увеличивая объем черепной коробки.

Значимость данных участков заключается в том, что две трети всей коры располагаются в глуби борозд. Бытуют мнение, что полушария развиваются неодинаково в разных отделах, в результате этого напряжение будет также неравномерным в конкретных участках. Это может привести к формированию складок либо извилин. Другие ученые полагают, что большое значение имеет первоначальное развитие борозд.

Анатомическая структура рассматриваемого органа отличается многообразием функций.

Каждый отдел данного органа обладает специфическим предназначением, являясь своеобразным уровнем воздействия.

Благодаря им осуществляется все функционирование головного мозга. Нарушения в работе определенной зоны способно привести к сбоям в деятельности всего мозга.

Зона обработки импульсов

Данный участок способствует обработке нервных сигналов, поступающих через зрительные рецепторы, обоняние, осязание. Большинство рефлексов, взаимосвязанных с моторикой, будут обеспечены пирамидальными клетками. Зона, обеспечивающая обработку мышечных данных, характеризуется слаженной взаимосвязью всех слоев органа, что имеет ключевое значение на этапе соответствующего обрабатывания нервных сигналов.

Если кора мозга поражена на этом участке, то могут произойти нарушения в слаженном функционировании функций и действий по восприятию, неразрывно взаимосвязанных с моторикой. Внешне расстройства в двигательной части проявляются во время непроизвольной двигательной активности, судорогах, тяжелых проявлениях, которые ведут к параличу.

Зона сенсорного восприятия

Данная область отвечает за обработку импульсов, поступающих в мозг. По своей структуре она представляет собой систему взаимодействия анализаторов для установления взаимосвязи со стимулятором. Специалисты выделяют 3 отдела, отвечающих за восприятие импульсов. К ним относят затылочную, обеспечивающая обрабатывание зрительных образов; височную, которая связана со слухом; зону гиппокампа. Часть, которая несет ответственность за обработку данных стимуляторов вкуса, расположены рядом с теменем. Здесь располагаются центры, которые отвечают за прием и обработку тактильных импульсов.

Сенсорная способность непосредственно зависит от количества нейронных связей на этом участке. Примерно данные отделы занимают до пятой части от всего размера коры. Повреждение данного участка провоцирует ненадлежащее восприятие, что не позволит продуцировать встречный импульс, который был бы адекватен раздражителю. Например, нарушение в функционировании слуховой зоны не во всех случаях вызывает глухоту, однако способно спровоцировать некоторые эффекты, искажающие нормальное восприятие данных.

Ассоциативная зона

Этот отдел способствует контактированию между импульсами, принимаемыми нейронными связями в сенсорном отделе, и моторикой, которая представляет собой встречный сигнал. Эта часть формирует осмысленные поведенческие рефлексы, а также принимает участие в их осуществлении. По месту расположения выделяются передние зоны, располагающиеся в лобных частях, и задние, занявшие промежуточное положение посреди висков, теменем и затылочным участком.

Для индивида свойственны сильно развитые задние ассоциативные зоны. Данные центры обладают особым предназначением, гарантируя обрабатывание речевых импульсов.

Патологические изменения в работе переднего ассоциативного участка ведет к сбоям в проведении анализа, прогнозирования, на основе пережитых ранее ощущений.

Расстройства в функционировании заднеассоциативного участка усложняет пространственную ориентацию, делает медленнее абстрактные мыслительные процессы, конструирование и идентификацию сложных зрительных образов.

Кора головного мозга ответственна за работу головного мозга. Подобное вызвало изменения в анатомическом строении самого мозга, так как его работа существенно усложнилась. Сверху определенных участков, взаимосвязанных с органами восприятия и двигательным аппаратом, образовались отделы, которые обладают ассоциативными волокнами. Они необходимы для сложной обработки попадающих внутрь мозга данных. Вследствие формирования данного органа начинается новая стадия, где ее значимость существенно возрастает. Данный отдел считается органом, который выражает индивидуальные особенности человека и его сознательную деятельность.

Понравилась статья? Поделитесь с друзьями!